Registration form

Aerial Application CEU Training $200.00
48 HOUR RUSH ORDER PROCESSING FEE ADDITIONAL $50.00

Start and finish dates: __
You will have 90 days from this date in order to complete this course

Print Name___
I have read and understood the disclaimer notice found on pages 2 & 8. Signature is required.

Signature __

Address: __

City___ State ________Zip__________

Phone:
Home (______)______________________ Work (______)________________________

Fax (______)_________________________ Email_____________________________

License or Operator ID #___Exp. Date__________

Class/Grade
Please circle/check which certification you are applying the course CEU’s.

Commercial Applicator_____ Residential Applicator_____ Industrial Applicator_____
Pesticide Handler_____ Agricultural Applicator_____ Adviser_____ Other ________________

Technical Learning College PO Box 3060, Chino Valley, AZ 86323
Toll Free (866) 557-1746 Fax (928) 272-0747 E-Mail info@tlch2o.com

If you’ve paid on the Internet, please write your Customer #________

We will e-mail you the certificate of completion. Please provide an e-mail address.
DISCLAIMER NOTICE
I fully understand that this type of study program deals with dangerous conditions and that I will not hold Technical Learning College, Technical Learning Consultants, Inc. (TLC) liable for any errors, omissions, advice, suggestions or neglect contained in this CEU education training course or for any violation or injury, death, neglect, damage or loss of your license or certification caused in any fashion by this CEU education training or course material suggestion or error. It is my responsibility to call or contact TLC if I need help or assistance and double-check to ensure my registration page and assignment has been received and graded. It is my responsibility to ensure all information is correct and to abide with all rules and regulations.

You can obtain a printed version of the course manual from TLC for an additional $129.95 plus shipping charges.

AFFIDAVIT OF EXAM COMPLETION
I affirm that I personally completed the entire text of the course. I also affirm that I completed the exam without assistance from any outside source. I understand that it is my responsibility to file or maintain my certificate of completion as required by the state or by the designation organization.

Grading Information
In order to maintain the integrity of our courses we do not distribute test scores, percentages or questions missed. Our exams are based upon pass/fail criteria with the benchmark for successful completion set at 70%.

Once you pass the exam, your record will reflect a successful completion and a certificate will be issued to you.

For security purposes, please fax or e-mail a copy of your driver's license and always call us to confirm we’ve received your assignment and to confirm your identity.

Do not solely depend on TLC’s Approval list for it may be outdated.

Some States and many employers require the final exam to be proctored.

A second certificate of completion for a second State Agency $50 processing fee.

All downloads are electronically tracked and monitored for security purposes.

No refunds.
CUSTOMER SERVICE RESPONSE CARD

Aerial Application Training Course

NAME: ________________________________

PLEASE COMPLETE THIS FORM BY CIRCLING THE NUMBER OF THE APPROPRIATE ANSWER IN THE AREA BELOW.

1. Please rate the difficulty of your course.
 Very Easy 0 1 2 3 4 5 Very Difficult

2. Please rate the difficulty of the testing process.
 Very Easy 0 1 2 3 4 5 Very Difficult

3. Please rate the subject matter on the exam to your actual field or work.
 Very Similar 0 1 2 3 4 5 Very Different

4. How did you hear about this Course? ________________________________

5. What would you do to improve the Course?

__

How about the price of the course?

Poor_____ Fair ____ Average ____ Good____ Great_____

How was your customer service?

Poor___ Fair ____ Average ____ Good _____ Great_____

Any other concerns or comments.

__

__

__
2017 Changes to EPA’s Farm Worker Protection Standard

In late 2015 the Environmental Protection Agency issued the long awaited revision to the Worker Protection Standard (WPS). This law is now technically active and it will be enforced. Please keep in mind that the WPS covers both restricted use AND general use pesticides. This course is not for worker and/or handler training. Always follow the label and your State Pesticide Agency rules.

This course contains EPA’s federal rule requirements. Please be aware that each state implements pesticide regulations that may be more stringent than EPA’s regulations and these frequently are changed. Check with your state environmental/pesticide agency for more information.

When you are finished with your assignment. Please fax this answer key and your registration page along with the customer survey to TLC.

We will require a photocopy of your driver's license.

Fax Number (928) 272-0747 Back-Up Fax (928) 468-0675

Always call us after faxing the paperwork to ensure that we’ve received it. Allow two weeks for processing and for the proper DPR forms to be sent back to you.

If you need this course graded and your certificate sooner, add a $50.00 rush fee. This may not include postage charges. Thank you for your business.

Grading Information

In order to maintain the integrity of our courses we do not distribute test scores, percentages or questions missed. Our exams are based upon pass/fail criteria with the benchmark for successful completion set at 70%. Once you pass the exam, your record will reflect a successful completion and a certificate will be issued to you.

Rush Grading Service

If you need this assignment graded and the results mailed to you within a 48-hour period, prepare to pay an additional rush service handling fee of $50.00. This fee may not cover postage costs.

If you need this service, simply write RUSH on the top of your Registration Form. We will place you in the front of the grading and processing line.
Aerial Application Answer Key

Name______________________________ Phone# _________________________

You are solely responsible in ensuring that this course is accepted for credit by your State. Did you check with your State agency to ensure this course is accepted for credit? No refunds.

Method of Course acceptance confirmation. Please fill this section

Website ___ Telephone Call___ Email_____ Spoke to___________________

You are responsible to ensure that TLC receives the Assignment and Registration Key. Please call us to ensure that we received it.

Multiple Choice. Pick only one answer per question.
Circle or Mark off, Underline or Bold the answer. Please circle the number of the assignment version 1 or 2 or 3 or 4 or 5

Topic 1 Aerial Application Introduction
10 final exam questions. (s) Means answer can be singular or plural.

3. A B C D E F 7. A B C D E F
4. A B C D E F 8. A B C D E F

Topic 2 Understanding Hydraulics and Sprayer Principles
10 final exam questions. (s) Means answer can be singular or plural.

3. A B C D E F 7. A B C D E F
4. A B C D E F 8. A B C D E F

Topic 3 Understanding Pumps and Aerial Sprayers
10 final exam questions. (s) Means answer can be singular or plural.

3. A B C D E F 7. A B C D E F
4. A B C D E F 8. A B C D E F
Topic 4 Aerial Application Assignment and Control Information Section
10 final exam questions. (s) Means answer can be singular or plural.

1. A B C D E F
2. A B C D E F
3. A B C D E F
4. A B C D E F
5. A B C D E F
6. A B C D E F
7. A B C D E F
8. A B C D E F
9. A B C D E F
10. A B C D E F

Topic 5 Pesticide Drift Control and Training Requirements
10 final exam questions. (s) Means answer can be singular or plural.

1. A B C D E F
2. A B C D E F
3. A B C D E F
4. A B C D E F
5. A B C D E F
6. A B C D E F
7. A B C D E F
8. A B C D E F
9. A B C D E F
10. A B C D E F

Topic 6 Complications/ Limitations / Risk
10 final exam questions. (s) Means answer can be singular or plural.

1. A B C D E F
2. A B C D E F
3. A B C D E F
4. A B C D E F
5. A B C D E F
6. A B C D E F
7. A B C D E F
8. A B C D E F
9. A B C D E F
10. A B C D E F

Topic 7 Aerial and Agricultural Pesticides
10 final exam questions. (s) Means answer can be singular or plural.

1. A B C D E F
2. A B C D E F
3. A B C D E F
4. A B C D E F
5. A B C D E F
6. A B C D E F
7. A B C D E F
8. A B C D E F
9. A B C D E F
10. A B C D E F

Amount of Time for Course Completion – How many hours you spent on course?

Must match State Hour Requirement _________ (Hours)

Please fax or email this answer key and the registration Page to TLC.
Important Information about this Course (Disclaimer Notice)

This CEU course has been prepared to educate pesticide applicators and operators in general safety awareness of dealing with the often-complex and various pesticide treatment sprays, devices, methods, and applications. This course (manual) will cover general laws, regulations, required procedures and accepted policies relating to the use of pesticides and herbicides. It should be noted, however, that the regulation of pesticides and hazardous materials is an ongoing process and subject to change over time. For this reason, a list of resources is provided to assist in obtaining the most up-to-date information on various subjects. This manual is not a guidance document for applicators or operators who are involved with pesticides. It is not designed to meet the requirements of the United States Environmental Protection Agency or your local State environmental protection agency or health department. This course manual will provide general pesticide safety awareness and should not be used as a basis for pesticide treatment method/device guidance. This document is not a detailed pesticide informational manual or a source or remedy for poison control.

Technical Learning College or Technical Learning Consultants, Inc. makes no warranty, guarantee or representation as to the absolute correctness or appropriateness of the information in this manual and assumes no responsibility in connection with the implementation of this information. It cannot be assumed that this manual contains all measures and concepts required for specific conditions or circumstances. This document should be used for educational purposes only and is not considered a legal document. Pesticides are poisonous. Always read and carefully follow all precautions and safety recommendations given on the container label. Store all chemicals in the original labeled containers in a locked cabinet or shed, away from food or feeds, and out of the reach of children, unauthorized persons, pets, and livestock.

Confine chemicals to the property or plants being treated. Avoid drift onto neighboring properties, especially gardens containing fruits and/or vegetables ready to be picked. Dispose of empty containers carefully. Follow label instructions for disposal. Never reuse containers. Make sure empty containers are not accessible to children or animals. Never dispose of containers where they may contaminate water supplies or natural waterways. Do not pour down sink or toilet. Consult your county agricultural commissioner for correct ways of disposing of excess pesticides. You should never burn pesticide containers. Individuals who are responsible for pesticide storage, mixing and application should obtain and comply with the most recent federal, state, and local regulations relevant to these sites and are urged to consult with the EPA and other appropriate federal, state and local agencies.

USE PESTICIDES WISELY: ALWAYS READ THE ENTIRE PESTICIDE LABEL CAREFULLY, FOLLOW ALL MIXING AND APPLICATION INSTRUCTIONS AND WEAR ALL RECOMMENDED PERSONAL PROTECTIVE GEAR AND CLOTHING. CONTACT YOUR STATE DEPARTMENT OF AGRICULTURE FOR ANY ADDITIONAL PESTICIDE USE REQUIREMENTS, RESTRICTIONS OR RECOMMENDATIONS.

NOTICE: MENTION OF PESTICIDE PRODUCTS IN THIS COURSE DOES NOT CONSTITUTE ENDORSEMENT OF ANY MATERIAL OR HERB OR HERBAL SUPPLEMENT. ALWAYS FOLLOW THE PRODUCT'S LABEL INSTRUCTIONS.

NOTICE
I understand that it is my responsibility to ensure that this CEU course is either approved or accepted in my State for CEU credit. I understand State laws and rules change on a frequent basis and I believe this course is currently accepted in my State for CEU or contact hour credit, if it is not, I will not hold Technical Learning College responsible.

I also understand that this type of study program deals with dangerous conditions and that I will not hold Technical Learning College, Technical Learning Consultants, Inc. (TLC) liable for any errors or omissions or advice contained in this CEU education training course or for any violation or injury caused by this CEU education training course material. I will call or contact TLC if I need help or assistance and double-check to ensure my registration page and assignment has been received and graded.

All downloads are electronically tracked and monitored for security purposes.
1. We will require all students to fax or e-mail a copy of their driver’s license with the registration form.

2. You will need to pick one of the following four assignments to complete. This selection process is based upon your last name.

3. If your last name begins with an A to G, you will pick assignment number 4, if your last name begins with the letter H to P, you are to complete assignment number 3 and if your last name begins with the letter Q-R, you will pick assignment number 2, and if your last name begins with the letter S-Z, you will pick assignment number 1.

Assignment #1 for all pest applicators whose last name begins with S-Z you will find your assignment on pages 9-22.

Assignment #2 for all pest applicators whose last name starting with the letter Q-R, your assignment is found on pages 23-36.

Assignment #3 for all pest applicators whose last name starting with the letter H-P, your assignment is found on pages 37-50.

Assignment #4 for all pest applicators whose last name starting with the letter A-G, your assignment is found on pages 51-64

Alternative Assignment #5 for repeat students Pages 65-78

These exams are frequently rotated.
Complete all topics before submitting the answers key.

Rush Grading Service
If you need this assignment graded and the results mailed to you within a 48-hour period, prepare to pay an additional rush service handling fee of $50.00. This fee may not cover postage costs. If you need this service, simply write RUSH on the top of your Registration Form. We will place you in the front of the grading and processing line.
Aerial Application CEU Training Assignment #1
Last Names S-Z

You will have 90 days from the start of this course to have successfully passed this assignment with a score of 70%. You may e-mail the answers to TLC, info@tlch2o.com or fax the answers to TLC, (928) 272-0747. This assignment is available to you in a Word Format on TLC’s Website. You can find online assistance for this course on the in the Search function on Adobe Acrobat PDF to help find the answers. Once you have paid the course fee, you will be provided complete course support from Student Services (928) 468-0665.

Write your answers on the Answer Key found in the front of this assignment.
1. We will require all students to fax or e-mail a copy of their driver’s license with the registration form.
2. You will need to pick one of the following four assignments to complete. This selection process is based upon your last name.
3. If your last name begins with an A to G, you will pick assignment number 4, if your last name begins with the letter H to P, you are to complete assignment number 3 and if your last name begins with the letter Q-R, you will pick assignment number 2, and if your last name begins with the letter S-Z, you will pick assignment number 1.

There are no intention trick questions. All questions require the specific answer as found in the text.

Topic 1 Aerial Application Introduction
1. _________________ in dense crop canopies can also be more difficult to achieve with aircraft.
 A. Accurate deposition D. Spray pressure
 B. Respiratory protection E. Accurate spray timing
 C. Extreme maneuverability F. None of the Above

Ultra-Low Volume (ULV)
2. The term Ultra-Low Volume (ULV) (spraying) is used in the context of ________________.
 A. Application D. Spray pressure
 B. Pesticide application E. Accurate spray timing
 C. Extreme maneuverability F. None of the Above

Field Application
3. Adequate pre-preparation will make sure that the actual ___________ is carried out under the safest conditions and accurate spray timing will help ensure that the product is used to optimum effect. Employers and applicator, worker or handlers must make sure that all safety equipment, clothing and aircraft loading equipment are clean and in a good state of repair.
 A. Application D. Spray pressure
 B. Spraying E. Accurate spray timing
 C. Maneuverability F. None of the Above
4. Enclosed cabs that provide respiratory protection must have a properly functioning ______________ that is used and maintained according to the manufacturer’s written operating instructions.
A. Positive metering system(s) D. Venturi-type and rotary-slinger spreader(s)
B. Vanes in the spreader(s) E. Ventilation system
C. Type of respirator F. None of the Above

Advantages of Rotary Wing Aircraft
5. Rotary wing aircraft offers the advantages of extreme maneuverability and __________ variation, and may be operated in almost any local area.
A. Application D. Spray pressure
B. Respiratory protection E. Accurate spray timing
C. Speed F. None of the Above

Sprayer Field Settings
6. During a flight, spray pressure, output and aircraft height above the crop can be adjusted if necessary however, as the pilot has to concentrate on flying the aircraft he may only occasionally check the ______________.
A. Application D. Venturi spreader(s)
B. Spraying system E. Spray pressure
C. Agitator(s) F. None of the Above

Chemical Handling
7. To help keep sprayer-applicator, worker or handler exposure to a minimum, wherever possible preference must be given to using pesticide packs handled via ______________.
A. Secure section D. Venturi spreader(s)
B. Spraying system E. Closed transfer systems
C. Agitator(s) F. None of the Above

Dry-Material Spreaders
8. ______________ and rotary-slinger spreaders are used to distribute dry formulations of herbicides, fertilizers, and seed.
A. Positive metering system(s) D. Venturi-type
B. Vanes in the spreader(s) E. Saddles
C. Agitator(s) F. None of the Above

Swath Pattern Application
9. ______________ can be adjusted to control the, and the pattern should be tested for even distribution of materials upon initial spreader installation.
A. Positive metering system(s) D. Venturi-type and rotary-slinger spreader(s)
B. Vanes in the spreader(s) E. Absorbent material(s)
C. Agitator(s) F. None of the Above

10. ______________ are valuable for metering pelleted herbicides or hard slick grass seed in fixed-wing aircraft. Chaffy grass seed can be especially difficult to meter and applicator, worker or handler “know-how” is valuable.
A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
B. Accurate deposition E. Most appropriate spraying equipment
C. Positive metering systems F. None of the Above
Topic 2 Understanding Hydraulics and Sprayer Principles

1. Hydrodynamics, the study of liquids in motion, is concerned with such matters as friction and turbulence generated in pipes by flowing liquids, the flow of water over weirs and through _________, and the use of hydraulic pressure in machinery.
 A. Nozzle(s) D. Relative pressures of the liquid(s)
 B. Hydraulic line(s) E. Height of liquid column(s)
 C. Isobar(s) F. None of the Above

2. __________ are almost incompressible.
 A. Liquid(s) D. Pressure(s)
 B. Hydraulic pressure(s) E. Volume(s)
 C. Velocity(s) F. None of the Above

Meteorology

3. The atmospheric pressure is of great importance in meteorology, since it determines the winds, which generally move at right angles to the direction of the most rapid change of pressure, that is, along the isobars, which are contours of __________. Certain typical weather patterns are associated with relatively high and relatively low pressures, and how they vary with time. The barometric pressure may be given in popular weather forecasts, though few people know what to do with it.
 A. Spray nozzle(s) D. Relative pressures of the liquid(s)
 B. Hydraulic line(s) E. Height of liquid column(s)
 C. Constant pressure F. None of the Above

4. Velocity of flow is an important consideration in sizing the __________.
 A. Spray nozzle(s) D. Relative pressures of the liquid(s)
 B. Hydraulic line(s) E. Height of liquid column(s)
 C. Isobar(s) F. None of the Above

Bernoulli’s Principle

5. Bernoulli’s principle thus says that a rise (fall) in pressure in a __________ must always be accompanied by a decrease (increase) in the speed, and conversely, if an increase (decrease) in the speed of the fluid results in a decrease (increase) in the pressure.
 A. Liquids D. Flowing fluid
 B. Hydraulic pressure E. Volume of flow
 C. Velocity of flow F. None of the Above

Boom Sprayers

6. Most sprayers distribute pesticides using a boom with spray nozzles spaced at __________. The most common example would be wide horizontal booms used on field sprayers to spray field crops.
 A. Spray nozzle(s) D. Relative pressures of the liquid(s)
 B. Hydraulic line(s) E. Height of liquid column(s)
 C. Isobar(s) F. None of the Above
7. The full advantages of ____________ are more likely to be realized when its use is preplanned. Development of a planned aerial application program will require good cooperation between pilot and grower.
A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
B. Accurate deposition E. Most appropriate spraying equipment
C. Aerial application F. None of the Above

More on Ultra Low Volume
8. Ultra-Low Volume (ULV) equipment ranges in capacity from a few ounces to 1/2 gallon per acre. ____________ and atomizing attachments such as Micronair, Mini-spin and Airfoil are frequently used to aid in droplet break-up.
A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
B. Accurate deposition E. Most appropriate spraying equipment
C. Special metering F. None of the Above

Understanding Spray Nozzles
9. The nozzle type and pressure should be selected for the ____________ and the atomization required for the job. Machines should be calibrated often to compensate for wear. The application rate (gallons per acre) will be set by the chemical being applied and the crop being treated as listed on the manufacturer's label.
A. Ground temperature D. Material being used
B. Application rate(s) E. Liquid dispersal system(s)
C. Maximum output F. None of the Above

Ultra-Low Volume (ULV) Formulations and Temperature
10. When using__________, special consideration must be given to monitoring the air and ground temperature difference. This is one of the critical indicators of the time to quit treating for the day. The best weather for spraying treatment is usually from dawn until mid-morning.
A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
B. Accurate deposition E. Liquid ultra-low volume (ULV) formulations
C. Pesticide labeling F. None of the Above
Topic 3 Understanding Pumps and Aerial Sprayers

Spray Nozzle Categorization

Application
1. Droplet micron size is determined by the specific nozzle used first and foremost. In general, the larger the orifice tube, the larger the micron size of the droplet produced. The second factor in determining droplet size is the _________________.
 A. Droplet produced D. Higher amounts of sprays
 B. Spray system E. Surface tension of a liquid
 C. Aircraft speed F. None of the Above

Distance between Nozzle and Target (Boom Height)
2. Less distance between the droplet release point and the ____________ will reduce spray drift. Less distance means less time to travel from nozzle to target and therefore less drift occurs.
 A. Pesticide D. Target
 B. Droplet release point E. Sprayer calibration
 C. Higher amounts of sprays F. None of the Above

Drain Valve(s)
3. The drain valve(s) must be located at the lowest point(s) in the system to allow for complete draining of the spray system at the ____________. The aircraft may also be used for other purposes during the course of the program which require draining the spray system before such use. Check all low points for drain valves or removable plugs that will allow draining the spray system.
 A. Droplet produced D. Higher amounts of sprays
 B. Spray system E. Surface tension of a liquid
 C. End of the program F. None of the Above

Emergency Shut-off Valve
4. The emergency shutoff valve should be located between the hopper and pump. The valve should be as close to the hopper as possible to prevent the loss of pesticide and damage to the environment in the ________________.
 A. Pesticide D. Event of a major spray system leak
 B. Droplet release point E. Sprayer calibration
 C. Higher amounts of sprays F. None of the Above

Electrostatic Sprayers
5. Electrostatic sprayers which apply __________ to the material being sprayed reduce spraying time and improve insect and disease control per unit of chemical applied.
 A. Droplet produced D. Higher amounts of sprays
 B. Spray system E. An electrical charge
 C. Tap water or base oil F. None of the Above
6. Higher amounts of sprays from air-assisted electrostatic units were also found deeper in the crop canopy compared to the amounts delivered by uncharged hydraulic sprayers. These sprayers also deposit more ______________on any fruit present in the canopy, however.
A. Pesticide D. Tension
B. Droplet release point E. Spray
C. Higher amounts of sprays F. None of the Above

Specific Gravity
7. Specific gravity is the ratio of the mass of a given volume of liquid to the mass of the same volume of water. In spraying, the main effect of the specific gravity Sg of a liquid other than water is on the capacity of the spray nozzle. All vendor-supplied performance data for nozzles are__________________.
A. Droplet produced D. Higher amounts of sprays
B. Spray system E. Surface tension of a liquid
C. Based on spraying water F. None of the Above

Surface Tension
8. The surface tension of a liquid tends to assume the______________, acting as a membrane under tension.
A. Pesticide D. Pressure
B. Droplet release point E. Smallest possible size
C. Higher amounts of sprays F. None of the Above

9. Surface tension is more apparent at low operating pressures. A higher surface tension reduces the spray angle, particularly on hollow cone nozzles. Low surface tensions can allow nozzles to be operated at__________________.
A. Droplet produced D. Higher amounts of sprays
B. Spray system E. Lower pressures
C. Tap water or base oil F. None of the Above

Liquid Application and Calculations
10. You should conduct sprayer calibration using tap water or base oil. Calibration depends on the_________________. After you have properly calibrated your equipment, it is ready to use. The next step is to read the label and find the site and pest which you are treating.
A. Pesticide D. Tension
B. Droplet release point E. Formulation applied and equipment used
C. Higher amounts of sprays F. None of the Above
Topic 4 Aerial Application Assignment and Control Information Section

Aircraft Facilities
Airports and Airstrips
1. Airports or airstrips must be of _________ to handle the aircraft that may be used for the program. Hard-surfaced runways are desirable when large multi-engine aircraft are used. The contractor/pilot must complete all arrangements necessary to use any airport.
 A. Application D. Adequate size
 B. Shorter E. Average sod conditions
 C. Maneuverability F. None of the Above

Minimum Airstrip Sizes
2. The airstrip lengths shown below are for runways with clear approaches and __________ at an elevation of approximately 4,000 feet above sea level. At higher elevations or when fields are soft, longer airstrips will be required. Hard-surfaced runways at lower elevations may be somewhat shorter.
 A. Application D. Adequate size
 B. Shorter E. Average sod conditions
 C. Maneuverability F. None of the Above

Notify Beekeepers
3. Many of the pesticides used in aerial treatments are highly toxic to bees. Notify beekeepers about the meetings. Program operational guidelines, environmental impact statements, __________, State laws, and/or pesticide labels may also require that beekeepers in the area be notified of control programs.
 A. Environmental application D. Environmental issues
 B. Environmental protection E. Accurate spraying
 C. Environmental assessments (EA) F. None of the Above

Spray Block, Sensitive Area, and Buffer Zone Verification
4. After taking a ___________flight with each pilot and confirming that everything (buffer zones, spray blocks, and sensitive areas) is recorded on a master program map, then jointly sign and date the map. When observation aircraft are not available, then using ground vehicles to show pilots and/or flaggers their assigned blocks may be necessary.
 A. Application D. Spraying reconnaissance
 B. Pretreatment reconnaissance E. Test reconnaissance
 C. Maneuverability F. None of the Above

Spray Deposition Monitoring
Dyecard Samplers
5. Use dyecards to monitor ________________.
 A. Nozzle or nozzle group output D. Liquid formulation spray deposition
 B. Pesticide absorption E. Row spacing
 C. Uniform distribution F. None of the Above
6. Dyecards are made of water- or oil-sensitive paper and are used to provide valuable information on swath width, spray droplet deposition pattern, and droplet size; and to identify leaks in the________________.
A. Application D. Liquid formulation spray deposition
B. Spray system E. Nozzle or nozzle group output
C. Boom F. None of the Above

Spray Boom Calibration
7. Use chart for distance to drive in the field. Use nozzle spacing for __________. For directed and band rigs use the row spacing.
A. Application D. Liquid formulation spray deposition
B. Spray system E. Nozzle or nozzle group output
C. Booms F. None of the Above

8. Set throttle for _____________and operate all equipment. Note seconds required to drive measured distance.
A. Application D. Spray pressure
B. Spraying E. Accurate spray timing
C. Extreme maneuverability F. None of the Above

9. Catch spray for the noted time in Step 2 in container marked in ounces. If boom, catch spray from one nozzle during noted time. On directed rigs, catch spray from all nozzles per row for noted time. ________________output in ounces = gallons/acre actually applied.
A. Nozzle or nozzle group D. Liquid formulation spray deposition
B. Pesticide E. Spray pressure
C. Uniform distribution F. None of the Above

10. Repeat for each nozzle to assure _____________. Replace any nozzles whose output is greater than 10 % of the average of all nozzles.
A. Nozzle or nozzle group D. Liquid formulation spray deposition
B. Pesticide distribution E. Spray pressure
C. Uniform distribution F. None of the Above
Topic 5 Pesticide Drift Control and Training Requirements

The EPA defines spray or dust drift as:

1. "the physical movement of ______________ through the air at the time of pesticide application or soon thereafter from the target site to any non- or off-target site. Spray drift shall not include movement of pesticides to non- or off-target sites caused by erosion, migration, volatility, or windblown soil particles that occurs after application or application of fumigants unless specifically addressed on the product label with respect to drift control requirements."

 A. Granular material(s)
 B. Pesticide droplets or particles
 C. Chemical control
 D. Organochlorine pesticide(s)
 E. Spray pressure, output and aircraft height
 F. None of the Above

Pesticide Residues

2. Pesticide residues are generally meant to include pesticides that are detectible in or on places other than ____________. Fresh water reservoirs, stream bed sediments, and harvested food would be examples of places that would be tested for pesticide residues.

 A. Pesticide(s)
 B. Accurate deposition
 C. Their intended target
 D. Ultra-low volume application of pesticide(s)
 E. Most appropriate spraying equipment
 F. None of the Above

Understanding the Dangers of Drift

3. Droplet size depends primarily upon the spray pressure, nozzle design and orientation, and the ____________. The size of granular materials depends upon the particular formulation and can be controlled to some extent by screening. In the case of sprays, droplet size is generally increased by reducing pressures or increasing nozzle size.

 A. Granular material(s)
 B. Pesticide droplets or particles
 C. Chemical control
 D. Surface tension of the spray solution
 E. Spray pressure, output and aircraft height
 F. None of the Above

Vapor Drift (Volatilization)

4. Hot temperatures, moist soils, and temperature inversions all increase the potential for vapor drift. ______________ is not movement of material caused by wind. In fact, calm or no wind may lead to inversions that could result in vapor drift. Vapor drift can be avoided by simply refraining from the use of ester-containing formulations of 2,4-D.

 A. Pesticide(s)
 B. Accurate deposition
 C. Vapor drift
 D. Ultra-low volume application of pesticide(s)
 E. Most appropriate spraying equipment
 F. None of the Above

Chemical Control in an IPM Program

5. Regular field scouting, coupled with forecasting pest problems and determining economic thresholds, is used to ensure that ____________ are only applied when pest populations warrant chemical control.

 A. Granular material(s)
 B. Pesticide droplets or particles
 C. Chemical control
 D. Pesticides
 E. Spray pressure, output and aircraft height
 F. None of the Above
Bowen's Disease
6. ______________involving arsenic powders has been implicated in Bowen's disease. However, lead arsenic has not been used by aerial applicators or in any other form of agriculture for three decades because of the adverse effects to human health that were not as well known when the powder was legal.

A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
B. Accurate deposition E. Most appropriate spraying equipment
C. Crop dusting F. None of the Above

Environmental Effects
Effects on Non-target Species
7. A number of the ____________ have been banned from most uses worldwide, and globally they are controlled via the Stockholm Convention on persistent organic pollutants. These include: aldrin, chlordane, DDT, dieldrin, endrin, heptachlor, mirex and toxaphene.

A. Granular material(s) D. Organochlorine pesticide(s)
B. Volatile herbicide(s) E. The phenoxy group of herbicides
C. Chemical control(s) F. None of the Above

Meteorological Considerations
8. The distance a spray droplet travels depends on the droplet size and downward velocity, the release height and the ambient conditions. Vortices created by the aircraft passage will also influence__________________.

A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
B. Accurate deposition E. Most appropriate spraying equipment
C. Spray distribution efficiency F. None of the Above

Sprayer Field Settings
9. During a flight, ______________, output and aircraft height above the crop can be adjusted if necessary however, as the pilot has to concentrate on flying the aircraft he may only occasionally check the spraying system.

A. Granular material(s) D. Ultra-low volume application of pesticide(s)
B. Pesticide droplets or particles E. Spray pressure
C. Chemical control F. None of the Above

Equipment Storage
10. Refer to the relevant applicator, ____________instruction manuals for both the spray equipment and the aircraft. Aircraft mounted spray equipment is often removed after spraying to release the aircraft for other duties. Both the spray equipment and the aircraft must be thoroughly cleaned (“decontaminated”) and dried, before being stored.

A. Handler(s) D. Early-entry workers
B. Agricultural employer(s) E. Worker or handler’s
C. Employee(s) F. None of the Above
Topic 6 Complications/ Limitations / Risk

Specific Restrictions

1. Specific restrictions may include prohibiting the use of certain pesticides under certain conditions, prohibiting certain methods of application, requiring use of a foliage barrier, or requiring a buffer zone distance between the site of ________________ to be protected.
 - A. Nozzle or nozzle group output
 - B. Application and areas
 - C. Uniform distribution
 - D. Application site
 - E. Row spacing
 - F. None of the Above

2. During the past few years, the OPP has received and reviewed new studies on spray drift that it required from pesticide registrants to support their product registrations. The OPP has completed its review of these studies and reached conclusions about the factors that influence drift and the amounts of sprays which can drift from the ________________.
 - A. Nozzle or nozzle group output
 - B. Application and areas
 - C. Uniform distribution
 - D. Application site
 - E. Row spacing
 - F. None of the Above

Droplet Drift

3. The distance of droplet drift depends upon the size of the droplets, the velocity of the wind and the height above the ground where the herbicide is discharged. In general, larger orifices and ________________.
 - A. The size of the droplet(s)
 - B. The wider the drift
 - C. The lesser the drift
 - D. Higher pressures result in larger droplets
 - E. Lower pressures result in larger droplets
 - F. None of the Above

Vapor Drift

4. Volatility refers to the ability of a herbicide to vaporize and to mix freely with the air. Volatile herbicides may produce ________________ that can be carried great distances from the target area to other crop sites.
 - A. The size of the droplet(s)
 - B. Drift
 - C. Spray
 - D. Vapors
 - E. Mists
 - F. None of the Above

Phenoxy Herbicides

5. The phenoxy group of herbicides has been most often involved in crop injury by off-target drift. ________________ includes 2,4-D, 2,4,5-T, 2,4-DB, 2,4,5-TP (Silvex) and MCPA. These herbicides are most commonly used for the control of broad-leaved weeds in crops and for the control of undesirable woody species.
 - A. Phenoxy herbicides
 - B. Esters
 - C. Volatile herbicide(s)
 - D. The phenoxy group
 - E. Esters or amines
 - F. None of the Above

6. ________________ in general are formulated in two ways, as esters or amines.
 - A. Phenoxy herbicides
 - B. Esters
 - C. Volatile herbicide(s)
 - D. The phenoxy group of herbicides
 - E. Esters or amines
 - F. None of the Above
7. ___________ are more effective in controlling hard-to-kill weeds but are the most hazardous in terms of volatility and consequent drift to sensitive crops.
 A. Phenoxy herbicides D. The phenoxy group of herbicides
 B. Esters E. Esters or amines
 C. Volatile herbicide(s) F. None of the Above

Other Components

8. Flow control devices are necessary to make the tank, pump and nozzles work together. Depending on the application system, these devices may include pressure regulators, unloader valves and control valves. Because both the ___________ and flow rate are determined by operating pressure, each sprayer should be equipped with a pressure gauge.
 A. Nozzle or nozzle group output D. Liquid formulation spray deposition
 B. Spray pattern E. Row spacing
 C. Uniform distribution F. None of the Above

9. The gauge should be placed where it may be easily seen. Strainers are also required for effective treatments. Strainers trap particles and debris in the spray mixture and protect the pump, ____________ and nozzles from damage.
 A. Nozzle or nozzle group output D. Liquid formulation spray deposition
 B. Pesticide sprayer E. Control devices
 C. Uniform distribution F. None of the Above

Dispersal Summary

10. All nozzles produce a range of _____________. The small, drift-prone particles cannot be eliminated but can be reduced and kept within reasonable limits.
 A. Nozzle or nozzle group output D. Liquid formulation spray deposition
 B. Pesticide drift E. Droplet sizes
 C. Uniform distribution F. None of the Above
Topic 7 Aerial and Agricultural Pesticides

Fenthion
1. Fenthion is an organothiophosphate insecticide, avicide, and acaricide. Like most other organophosphates, its mode of action is via ______________.
 A. Benzamide D. Cholinesterase inhibition
 B. Pyrethroid E. Organophosphate
 C. Insect growth regulator F. None of the Above

2. Fenthion is a contact and stomach __________ used against many sucking, biting pests.
 A. Insecticide D. Restricted pesticide
 B. Pyrethroid E. Organophosphate
 C. Insect growth regulator F. None of the Above

3. ______________ is a pesticide that is widely used in agriculture, residential landscaping, public recreation areas, and in public health pest control programs such as mosquito eradication. In the US, it is the most commonly used organophosphate insecticide.
 A. Benzamide D. Malathion
 B. Pyrethroid E. Organophosphate
 C. Permethrin F. None of the Above

4. _______________are a "natural" environmental product that is of low toxicity to mammals. They are highly photolabile and degrade quickly in sunlight, and the cost of reapplying them has limited their widespread agricultural use.
 A. Benzamide(s) D. Restricted pesticide(s)
 B. Pyrethroid(s) E. Organophosphate(s)
 C. Pyrethrin(s) F. None of the Above

Adsorption Process
5. The adsorption process binds __________ to soil particles, similar to iron filings or paper clips sticking to a magnet.
 A. Benzamide(s) D. Restricted pesticide(s)
 B. Pesticide(s) E. Organophosphate(s)
 C. Insect growth regulator(s) F. None of the Above

Adsorption
6. Adsorption is the binding of the pesticide to the mineral components of the soil or organic matter, which is abundant in turf. In turf, organic matter includes, in many circumstances, a thatch layer. In ___________there is not a thatch layer like we have in a turf system. This layer makes the turf system quite unique with regard to the buffering capacity of the system to those materials introduced into it.
 A. Volatilization D. Environmental factors
 B. Pesticide transfer E. Other pesticide application circumstances
 C. Photodegradation F. None of the Above
Pesticide Transfer
7. Too much _______________, however, can move a pesticide away from the target pest. This can lead to reduced pest control, contamination of surface water and groundwater, and injury of non-target species, including humans.
 A. Volatilization D. Environmental factors
 B. Movement E. Pesticide chemical application(s)
 C. Photodegradation F. None of the Above

Thermophilic Temperatures
8. Volatilization of a pesticide is highly temperature dependent; thermophilic temperatures typically increase______________.
 A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
 B. Accurate deposition E. Pesticide losses
 C. Pesticide labeling F. None of the Above

Photodegradation
9. Photodegradation is the breakdown of pesticides by light, particularly sunlight. _______________can destroy pesticides on foliage, on the surface of the soil, and even in the air.
 A. Volatilization D. Environmental factors
 B. Pesticide chemical application(s) E. Photodegradation
 C. Vapor drift F. None of the Above

10. All _________________ should be in the original DOT approved containers and correctly labeled. All containers should be secured against movement that could result in breaking or spilling. Never transport pesticides in a vehicle that also carries food or feed products.
 A. Restricted pesticide(s) D. Pesticide chemical application(s)
 B. Pesticides E. Pesticides and compatibility agent(s)
 C. Agriculture pesticides F. None of the Above
Aerial Application CEU Training Assignment #2
Last Names Q-R

You will have 90 days from the start of this course to have successfully passed this assignment with a score of 70%. You may e-mail the answers to TLC, info@tlch2o.com or fax the answers to TLC, (928) 272-0747. This assignment is available to you in a Word Format on TLC’s Website. You can find online assistance for this course on the in the Search function on Adobe Acrobat PDF to help find the answers. Once you have paid the course fee, you will be provided complete course support from Student Services (928) 468-0665.

Write your answers on the Answer Key found in the front of this assignment.
1. We will require all students to fax or e-mail a copy of their driver’s license with the registration form.
2. You will need to pick one of the following four assignments to complete. This selection process is based upon your last name.
3. If your last name begins with an A to G, you will pick assignment number 4, if your last name begins with the letter H to P, you are to complete assignment number 3 and if your last name begins with the letter Q-R, you will pick assignment number 2, and if your last name begins with the letter S-Z, you will pick assignment number 1.

There are no intention trick questions. All questions require the specific answer as found in the text.

Topic 1 Aerial Application Introduction
Field Application
1. Adequate pre-preparation will make sure that the actual __________is carried out under the safest conditions and accurate spray timing will help ensure that the product is used to optimum effect. Employers and applicator, worker or handlers must make sure that all safety equipment, clothing and aircraft loading equipment are clean and in a good state of repair.
 A. Application D. Spray pressure
 B. Spraying E. Accurate spray timing
 C. Maneuverability F. None of the Above

Enclosed Cabs
2. Enclosed cabs must have a nonporous barrier that totally surrounds the occupants and prevents contact with __________outside of the cab.
 A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
 B. Deposition E. Most appropriate spraying equipment
 C. Atmosphere F. None of the Above

Advantages of Rotary Wing Aircraft
3. Rotary wing aircraft offers the advantages of extreme maneuverability and ______________variation, and may be operated in almost any local area.
 A. Application D. Spray pressure
 B. Respiratory protection E. Accurate spray timing
 C. Speed F. None of the Above
4. ___________ is relatively easy to achieve with most ground-based directed spraying, but spray application with fixed and rotary wing aircraft presents more complex problems.
 A. Application D. Spray pressure
 B. Acceptable spray distribution E. Accurate spray timing
 C. Extreme maneuverability F. None of the Above

Sprayer Field Settings
5. During a flight, spray pressure, output and aircraft height above the crop can be adjusted if necessary however, as the pilot has to concentrate on flying the aircraft he may only occasionally check the ______________.
 A. Application D. Venturi spreader(s)
 B. Spraying system E. Spray pressure
 C. Agitator(s) F. None of the Above

Chemical Handling
6. To help keep sprayer-applicator, worker or handler exposure to a minimum, wherever possible preference must be given to using pesticide packs handled via ______________.
 A. Secure section D. Venturi spreader(s)
 B. Spraying system E. Closed transfer systems
 C. Agitator(s) F. None of the Above

Dry-Material Spreaders
7. ______________ and rotary-slinger spreaders are used to distribute dry formulations of herbicides, fertilizers, and seed.
 A. Positive metering system(s) D. Venturi-type
 B. Vanes in the spreader(s) E. Saddles
 C. Agitator(s) F. None of the Above

Swath Pattern Application
8. ______________ can be adjusted to control the, and the pattern should be tested for even distribution of materials upon initial spreader installation.
 A. Positive metering system(s) D. Venturi-type and rotary-slinger spreader(s)
 B. Vanes in the spreader(s) E. Absorbent material(s)
 C. Agitator(s) F. None of the Above

9. Agitators are available to assist the __________ from the hopper.
 A. Secure section D. Venturi spreader(s)
 B. Spraying system E. Spray pressure
 C. Flow of material F. None of the Above

10. ___________ are valuable for metering pelleted herbicides or hard slick grass seed in fixed-wing aircraft. Chaffy grass seed can be especially difficult to meter and applicator, worker or handler “know-how” is valuable.
 A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
 B. Accurate deposition E. Most appropriate spraying equipment
 C. Positive metering systems F. None of the Above
Topic 2 Understanding Hydraulics and Sprayer Principles

1. Hydrodynamics, the study of liquids in motion, is concerned with such matters as friction and turbulence generated in pipes by flowing liquids, the flow of water over weirs and through ________, and the use of hydraulic pressure in machinery.
 A. Nozzle(s) D. Relative pressures of the liquid(s)
 B. Hydraulic line(s) E. Height of liquid column(s)
 C. Isobar(s) F. None of the Above

2. ________are almost incompressible.
 A. Liquid(s) D. Pressure(s)
 B. Hydraulic pressure(s) E. Volume(s)
 C. Velocity(s) F. None of the Above

Meteorology
3. The atmospheric pressure is of great importance in meteorology, since it determines the winds, which generally move at right angles to the direction of the most rapid change of pressure, that is, along the isobars, which are contours of ________. Certain typical weather patterns are associated with relatively high and relatively low pressures, and how they vary with time. The barometric pressure may be given in popular weather forecasts, though few people know what to do with it.
 A. Spray nozzle(s) D. Relative pressures of the liquid(s)
 B. Hydraulic line(s) E. Height of liquid column(s)
 C. Constant pressure F. None of the Above

4. Velocity of flow is an important consideration in sizing the ______________.
 A. Spray nozzle(s) D. Relative pressures of the liquid(s)
 B. Hydraulic line(s) E. Height of liquid column(s)
 C. Isobar(s) F. None of the Above

Bernoulli’s Principle
5. Bernoulli’s principle thus says that a rise (fall) in pressure in a ________ must always be accompanied by a decrease (increase) in the speed, and conversely, if an increase (decrease) in, the speed of the fluid results in a decrease (increase) in the pressure.
 A. Liquids D. Flowing fluid
 B. Hydraulic pressure E. Volume of flow
 C. Velocity of flow F. None of the Above

Boom Sprayers
6. Most sprayers distribute pesticides using a boom with spray nozzles spaced at ____________. The most common example would be wide horizontal booms used on field sprayers to spray field crops.
 A. Spray nozzle(s) D. Relative pressures of the liquid(s)
 B. Hydraulic line(s) E. Height of liquid column(s)
 C. Isobar(s) F. None of the Above
7. The full advantages of ____________ are more likely to be realized when its use is preplanned. Development of a planned aerial application program will require good cooperation between pilot and grower.
A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
B. Accurate deposition E. Most appropriate spraying equipment
C. Aerial application F. None of the Above

More on Ultra Low Volume
8. Ultra-Low Volume (ULV) equipment ranges in capacity from a few ounces to 1/2 gallon per acre. ____________ and atomizing attachments such as Micronair, Mini-spin and Airfoil are frequently used to aid in droplet break-up.
A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
B. Accurate deposition E. Most appropriate spraying equipment
C. Special metering F. None of the Above

Understanding Spray Nozzles
9. The nozzle type and pressure should be selected for the ______________ and the atomization required for the job. Machines should be calibrated often to compensate for wear. The application rate (gallons per acre) will be set by the chemical being applied and the crop being treated as listed on the manufacturer's label.
A. Ground temperature D. Material being used
B. Application rate(s) E. Liquid dispersal system(s)
C. Maximum output F. None of the Above

Ultra-Low Volume (ULV) Formulations and Temperature
10. When using ____________, special consideration must be given to monitoring the air and ground temperature difference. This is one of the critical indicators of the time to quit treating for the day. The best weather for spraying treatment is usually from dawn until mid-morning.
A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
B. Accurate deposition E. Liquid ultra-low volume (ULV) formulations
C. Pesticide labeling F. None of the Above
Topic 3 Understanding Pumps and Aerial Sprayers

Spray Nozzle Categorization

Application
1. Droplet micron size is determined by the specific nozzle used first and foremost. In general, the larger the orifice tube, the larger the micron size of the droplet produced. The second factor in determining droplet size is the ________________.
 A. Droplet produced D. Higher amounts of sprays
 B. Spray system E. Surface tension of a liquid
 C. Aircraft speed F. None of the Above

Distance between Nozzle and Target (Boom Height)
2. Less distance between the droplet release point and the __________ will reduce spray drift. Less distance means less time to travel from nozzle to target and therefore less drift occurs.
 A. Pesticide D. Target
 B. Droplet release point E. Sprayer calibration
 C. Higher amounts of sprays F. None of the Above

Drain Valve(s)
3. The drain valve(s) must be located at the lowest point(s) in the system to allow for complete draining of the spray system at the ______________. The aircraft may also be used for other purposes during the course of the program which require draining the spray system before such use. Check all low points for drain valves or removable plugs that will allow draining the spray system.
 A. Droplet produced D. Higher amounts of sprays
 B. Spray system E. Surface tension of a liquid
 C. End of the program F. None of the Above

Emergency Shut-off Valve
4. The emergency shutoff valve should be located between the hopper and pump. The valve should be as close to the hopper as possible to prevent the loss of pesticide and damage to the environment in the ______________.
 A. Pesticide D. Event of a major spray system leak
 B. Droplet release point E. Sprayer calibration
 C. Higher amounts of sprays F. None of the Above

Electrostatic Sprayers
5. Electrostatic sprayers which apply __________ to the material being sprayed reduce spraying time and improve insect and disease control per unit of chemical applied.
 A. Droplet produced D. Higher amounts of sprays
 B. Spray system E. An electrical charge
 C. Tap water or base oil F. None of the Above
6. Higher amounts of sprays from air-assisted electrostatic units were also found deeper in the crop canopy compared to the amounts delivered by uncharged hydraulic sprayers. These sprayers also deposit more _______________ on any fruit present in the canopy, however.
 A. Pesticide D. Tension
 B. Droplet release point E. Spray
 C. Higher amounts of sprays F. None of the Above

Specific Gravity
7. Specific gravity is the ratio of the mass of a given volume of liquid to the mass of the same volume of water. In spraying, the main effect of the specific gravity S_g of a liquid other than water is on the capacity of the spray nozzle. All vendor-supplied performance data for nozzles are_________________.
 A. Droplet produced D. Higher amounts of sprays
 B. Spray system E. Surface tension of a liquid
 C. Based on spraying water F. None of the Above

Surface Tension
8. The surface tension of a liquid tends to assume the______________, acting as a membrane under tension.
 A. Pesticide D. Pressure
 B. Droplet release point E. Smallest possible size
 C. Higher amounts of sprays F. None of the Above

9. Surface tension is more apparent at low operating pressures. A higher surface tension reduces the spray angle, particularly on hollow cone nozzles. Low surface tensions can allow nozzles to be operated at___________________.
 A. Droplet produced D. Higher amounts of sprays
 B. Spray system E. Lower pressures
 C. Tap water or base oil F. None of the Above

Liquid Application and Calculations
10. You should conduct sprayer calibration using tap water or base oil. Calibration depends on the_________________. After you have properly calibrated your equipment, it is ready to use. The next step is to read the label and find the site and pest which you are treating.
 A. Pesticide D. Tension
 B. Droplet release point E. Formulation applied and equipment used
 C. Higher amounts of sprays F. None of the Above
Topic 4 Aerial Application Assignment and Control Information
Section

Aircraft Facilities
Airports and Airstrips
1. Airports or airstrips must be of __________ to handle the aircraft that may be used for the program. Hard-surfaced runways are desirable when large multi-engine aircraft are used. The contractor/pilot must complete all arrangements necessary to use any airport.
 A. Application D. Adequate size
 B. Shorter E. Average sod conditions
 C. Maneuverability F. None of the Above

Minimum Airstrip Sizes
2. The airstrip lengths shown below are for runways with clear approaches and __________ at an elevation of approximately 4,000 feet above sea level. At higher elevations or when fields are soft, longer airstrips will be required. Hard-surfaced runways at lower elevations may be somewhat shorter.
 A. Application D. Adequate size
 B. Shorter E. Average sod conditions
 C. Maneuverability F. None of the Above

Notify Beekeepers
3. Many of the pesticides used in aerial treatments are highly toxic to bees. Notify beekeepers about the meetings. Program operational guidelines, environmental impact statements, __________, State laws, and/or pesticide labels may also require that beekeepers in the area be notified of control programs.
 A. Environmental application D. Environmental issues
 B. Environmental protection E. Accurate spraying
 C. Environmental assessments (EA) F. None of the Above

Spray Block, Sensitive Area, and Buffer Zone Verification
4. After taking a __________ flight with each pilot and confirming that everything (buffer zones, spray blocks, and sensitive areas) is recorded on a master program map, then jointly sign and date the map. When observation aircraft are not available, then using ground vehicles to show pilots and/or flaggers their assigned blocks may be necessary.
 A. Application D. Spraying reconnaissance
 B. Pretreatment reconnaissance E. Test reconnaissance
 C. Maneuverability F. None of the Above

Spray Deposition Monitoring
Dyecard Samplers
5. Use dyecards to monitor __________.
 A. Nozzle or nozzle group output D. Liquid formulation spray deposition
 B. Pesticide absorption E. Row spacing
 C. Uniform distribution F. None of the Above
6. Dyecards are made of water- or oil-sensitive paper and are used to provide valuable information on swath width, spray droplet deposition pattern, and droplet size; and to identify leaks in the ____________.
 A. Application D. Liquid formulation spray deposition
 B. Spray system E. Nozzle or nozzle group output
 C. Boom F. None of the Above

Spray Boom Calibration

7. Use chart for distance to drive in the field. Use nozzle spacing for __________. For directed and band rigs use the row spacing.
 A. Application D. Liquid formulation spray deposition
 B. Spray system E. Nozzle or nozzle group output
 C. Booms F. None of the Above

8. Set throttle for __________ and operate all equipment. Note seconds required to drive measured distance.
 A. Application D. Spray pressure
 B. Spraying E. Accurate spray timing
 C. Extreme maneuverability F. None of the Above

9. Catch spray for the noted time in Step 2 in container marked in ounces. If boom, catch spray from one nozzle during noted time. On directed rigs, catch spray from all nozzles per row for noted time. ___________ output in ounces = gallons/acre actually applied.
 A. Nozzle or nozzle group D. Liquid formulation spray deposition
 B. Pesticide E. Spray pressure
 C. Uniform distribution F. None of the Above

10. Repeat for each nozzle to assure ___________. Replace any nozzles whose output is greater than 10 % of the average of all nozzles.
 A. Nozzle or nozzle group D. Liquid formulation spray deposition
 B. Pesticide distribution E. Spray pressure
 C. Uniform distribution F. None of the Above
Topic 5 Pesticide Drift Control and Training Requirements

The EPA defines spray or dust drift as:
1. "the physical movement of __________through the air at the time of pesticide application or soon thereafter from the target site to any non- or off-target site. Spray drift shall not include movement of pesticides to non- or off-target sites caused by erosion, migration, volatility, or windblown soil particles that occurs after application or application of fumigants unless specifically addressed on the product label with respect to drift control requirements."
 A. Granular material(s) D. Organochlorine pesticide(s)
 B. Pesticide droplets or particles E. Spray pressure, output and aircraft height
 C. Chemical control F. None of the Above

Pesticide Residues
2. Pesticide residues are generally meant to include pesticides that are detectible in or on places other than __________. Fresh water reservoirs, stream bed sediments, and harvested food would be examples of places that would be tested for pesticide residues.
 A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
 B. Accurate deposition E. Most appropriate spraying equipment
 C. Their intended target F. None of the Above

Understanding the Dangers of Drift
3. Droplet size depends primarily upon the spray pressure, nozzle design and orientation, and the __________. The size of granular materials depends upon the particular formulation and can be controlled to some extent by screening. In the case of sprays, droplet size is generally increased by reducing pressures or increasing nozzle size.
 A. Granular material(s) D. Surface tension of the spray solution
 B. Pesticide droplets or particles E. Spray pressure, output and aircraft height
 C. Chemical control F. None of the Above

Vapor Drift (Volatilization)
4. Hot temperatures, moist soils, and temperature inversions all increase the potential for vapor drift. __________ is not movement of material caused by wind. In fact, calm or no wind may lead to inversions that could result in vapor drift. Vapor drift can be avoided by simply refraining from the use of ester-containing formulations of 2,4-D.
 A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
 B. Accurate deposition E. Most appropriate spraying equipment
 C. Vapor drift F. None of the Above

Chemical Control in an IPM Program
5. Regular field scouting, coupled with forecasting pest problems and determining economic thresholds, is used to ensure that __________ are only applied when pest populations warrant chemical control.
 A. Granular material(s) D. Pesticides
 B. Pesticide droplets or particles E. Spray pressure, output and aircraft height
 C. Chemical control F. None of the Above
Bowen's Disease
6. ______________involving arsenic powders has been implicated in Bowen's disease. However, lead arsenic has not been used by aerial applicators or in any other form of agriculture for three decades because of the adverse effects to human health that were not as well known when the powder was legal.

A. Pesticide(s)
B. Accurate deposition
C. Crop dusting

D. Ultra-low volume application of pesticide(s)
E. Most appropriate spraying equipment
F. None of the Above

Environmental Effects
Effects on Non-target Species
7. A number of the ____________ have been banned from most uses worldwide, and globally they are controlled via the Stockholm Convention on persistent organic pollutants. These include: aldrin, chlordane, DDT, dieldrin, endrin, heptachlor, mirex and toxaphene.

A. Granular material(s)
B. Volatile herbicide(s)
C. Chemical control(s)

D. Organochlorine pesticide(s)
E. The phenoxy group of herbicides
F. None of the Above

Meteorological Considerations
8. The distance a spray droplet travels depends on the droplet size and downward velocity, the release height and the ambient conditions. Vortices created by the aircraft passage will also influence__________________.

A. Pesticide(s)
B. Accurate deposition
C. Spray distribution efficiency

D. Ultra-low volume application of pesticide(s)
E. Most appropriate spraying equipment
F. None of the Above

Sprayer Field Settings
9. During a flight, ______________, output and aircraft height above the crop can be adjusted if necessary however, as the pilot has to concentrate on flying the aircraft he may only occasionally check the spraying system.

A. Granular material(s)
B. Pesticide droplets or particles
C. Chemical control

D. Ultra-low volume application of pesticide(s)
E. Spray pressure
F. None of the Above

Equipment Storage
10. Refer to the relevant applicator, ____________instruction manuals for both the spray equipment and the aircraft. Aircraft mounted spray equipment is often removed after spraying to release the aircraft for other duties. Both the spray equipment and the aircraft must be thoroughly cleaned (“decontaminated”) and dried, before being stored.

A. Handler(s)
B. Agricultural employer(s)
C. Employee(s)

D. Early-entry workers
E. Worker or handler’s
F. None of the Above

Aerial Application Assignment 1/1/2019
Specific Restrictions

1. Specific restrictions may include prohibiting the use of certain pesticides under certain conditions, prohibiting certain methods of application, requiring use of a foliage barrier, or requiring a buffer zone distance between the site of ________________ to be protected.
 A. Nozzle or nozzle group output D. Application site
 B. Application and areas E. Row spacing
 C. Uniform distribution F. None of the Above

2. During the past few years, the OPP has received and reviewed new studies on spray drift that it required from pesticide registrants to support their product registrations. The OPP has completed its review of these studies and reached conclusions about the factors that influence drift and the amounts of sprays which can drift from the ________________.
 A. Nozzle or nozzle group output D. Application site
 B. Application and areas E. Row spacing
 C. Uniform distribution F. None of the Above

Droplet Drift

3. The distance of droplet drift depends upon the size of the droplets, the velocity of the wind and the height above the ground where the herbicide is discharged. In general, larger orifices and _________________.
 A. The size of the droplet(s) D. Higher pressures result in larger droplets
 B. The wider the drift E. Lower pressures result in larger droplets
 C. The lesser the drift F. None of the Above

Vapor Drift

4. Volatility refers to the ability of a herbicide to vaporize and to mix freely with the air. Volatile herbicides may produce ________________ that can be carried great distances from the target area to other crop sites.
 A. The size of the droplet(s) D. Vapors
 B. Drift E. Mists
 C. Spray F. None of the Above

Phenoxy Herbicides

5. The phenoxy group of herbicides has been most often involved in crop injury by off-target drift. ________________ includes 2,4-D, 2,4,5-T, 2,4-DB, 2,4,5-TP (Silvex) and MCPA. These herbicides are most commonly used for the control of broad-leaved weeds in crops and for the control of undesirable woody species.
 A. Phenoxy herbicides D. The phenoxy group
 B. Esters E. Esters or amines
 C. Volatile herbicide(s) F. None of the Above

6. ________________ in general are formulated in two ways, as esters or amines.
 A. Phenoxy herbicides D. The phenoxy group of herbicides
 B. Esters E. Esters or amines
 C. Volatile herbicide(s) F. None of the Above
7. ___________ are more effective in controlling hard-to-kill weeds but are the most hazardous in terms of volatility and consequent drift to sensitive crops.
 A. Phenoxy herbicides D. The phenoxy group of herbicides
 B. Esters E. Esters or amines
 C. Volatile herbicide(s) F. None of the Above

Other Components

8. Flow control devices are necessary to make the tank, pump and nozzles work together. Depending on the application system, these devices may include pressure regulators, unloader valves and control valves. Because both the ___________and flow rate are determined by operating pressure, each sprayer should be equipped with a pressure gauge.
 A. Nozzle or nozzle group output D. Liquid formulation spray deposition
 B. Spray pattern E. Row spacing
 C. Uniform distribution F. None of the Above

9. The gauge should be placed where it may be easily seen. Strainers are also required for effective treatments. Strainers trap particles and debris in the spray mixture and protect the pump, ___________ and nozzles from damage.
 A. Nozzle or nozzle group output D. Liquid formulation spray deposition
 B. Pesticide sprayer E. Control devices
 C. Uniform distribution F. None of the Above

Dispersal Summary

10. All nozzles produce a range of ___________. The small, drift-prone particles cannot be eliminated but can be reduced and kept within reasonable limits.
 A. Nozzle or nozzle group output D. Liquid formulation spray deposition
 B. Pesticide drift E. Droplet sizes
 C. Uniform distribution F. None of the Above
Topic 7 Aerial and Agricultural Pesticides

Fenthion
1. Fenthion is a contact and stomach __________used against many sucking, biting pests.
 A. Insecticide D. Restricted pesticide
 B. Pyrethroid E. Organophosphate
 C. Insect growth regulator
 F. None of the Above

Malathion
2. Malathion is a(n) __________parasympathomimetic which binds irreversibly to cholinesterase. Malathion is an insecticide of relatively low human toxicity; however recent studies have shown that children with higher levels of Malathion in their urine seem to be at an increased risk of attention deficit hyperactivity disorder.
 A. Insect growth regulator D. Hormonal IGRs
 B. Organophosphate E. Benzamide
 C. Benzoyl-phenylurea
 F. None of the Above

3. __________have been synthesized to be similar to pyrethrins yet more stable in the environment. Evidence suggests that they have a very large margin of safety when used as directed by the label (Aldridge, 1990; Chen et al., 1991; Snodgrass, 1992).
 A. Benzamide(s) D. Restricted pesticide (s)
 B. Pyrethroid(s) E. Organophosphate(s)
 C. Pyrethrin(s) F. None of the Above

Adsorption Process
4. The adsorption process binds __________to soil particles, similar to iron filings or paper clips sticking to a magnet.
 A. Benzamide(s) D. Restricted pesticide(s)
 B. Pesticide(s) E. Organophosphate(s)
 C. Insect growth regulator(s) F. None of the Above

Pesticide Transfer
5. ____________is sometimes essential for pest control. For example, for certain pre-emergence herbicides to be effective, they must move within the soil to reach the germinating seeds.
 A. Volatilization D. Environmental factors
 B. Pesticide transfer E. Other pesticide application circumstances
 C. Photodegradation F. None of the Above

Pesticide Transfer
6. Too much ____________, however, can move a pesticide away from the target pest. This can lead to reduced pest control, contamination of surface water and groundwater, and injury of non-target species, including humans.
 A. Volatilization D. Environmental factors
 B. Movement E. Pesticide chemical application(s)
 C. Photodegradation F. None of the Above
Volatilization

7. Volatilization occurs when a pesticide partitions from the solid or aqueous phase to the __________________. Once volatilized, a pesticide may diffuse into the atmosphere and either be destroyed or continue as an environmental risk. When mixing disturbs a soil contaminated by a pesticide or other organic compound, a 30 percent or greater loss of the soil contaminant through volatilization is not unusual.

A. Solid
B. Liquid
C. Photodegradation
D. Environmental
E. Pesticide chemical application(s)
F. None of the Above

Thermophilic Temperatures

8. Volatilization can result in reduced control of the target pest because less pesticide remains at the target site.______________, the movement of pesticide vapors or gases in the atmosphere, can lead to injury of nontarget species. Herbicide vapors in particular can injure nontarget plants.

A. Volatilization
B. Vapor drift
C. Pesticide chemical application(s)
D. Environmental factors
E. Photodegradation
F. None of the Above

Photodegradation

9. Photodegradation is the breakdown of pesticides by light, particularly sunlight. ______________ can destroy pesticides on foliage, on the surface of the soil, and even in the air.

A. Volatilization
B. Pesticide chemical application(s)
C. Vapor drift
D. Environmental factors
E. Photodegradation
F. None of the Above

Proper Pesticide Handling

10. Care must be exercised in cleaning equipment, clothing, and persons working with ______________. Additionally, special precautions are necessary if pesticides are spilled or catch fire. Certain materials associated with vector control operations, including some pesticides, are considered by EPA and DPR to represent hazardous wastes.

A. Restricted pesticide(s)
B. Pesticides
C. Agriculture pesticides
D. Pesticide chemical application(s)
E. Pesticides and compatibility agent(s)
F. None of the Above
Aerial Application CEU Training Assignment #3
Last Names H-P

You will have 90 days from the start of this course to have successfully passed this assignment with a score of 70%. You may e-mail the answers to TLC, info@tlch2o.com or fax the answers to TLC, (928) 272-0747. This assignment is available to you in a Word Format on TLC’s Website. You can find online assistance for this course on the in the Search function on Adobe Acrobat PDF to help find the answers. Once you have paid the course fee, you will be provided complete course support from Student Services (928) 468-0665.

Write your answers on the Answer Key found in the front of this assignment.
1. We will require all students to fax or e-mail a copy of their driver’s license with the registration form.
2. You will need to pick one of the following four assignments to complete. This selection process is based upon your last name.
3. If your last name begins with an A to G, you will pick assignment number 4, if your last name begins with the letter H to P, you are to complete assignment number 3 and if your last name begins with the letter Q-R, you will pick assignment number 2, and if your last name begins with the letter S-Z, you will pick assignment number 1.

There are no intention trick questions. All questions require the specific answer as found in the text.

Topic 1 Aerial Application
1. ________________in dense crop canopies can also be more difficult to achieve with aircraft.
 A. Accurate deposition D. Spray pressure
 B. Respiratory protection E. Accurate spray timing
 C. Extreme maneuverability F. None of the Above

Ultra-Low Volume (ULV)
2. The term Ultra-Low Volume (ULV) (spraying) is used in the context of ________________.
 A. Application D. Spray pressure
 B. Pesticide application E. Accurate spray timing
 C. Extreme maneuverability F. None of the Above

Field Application
3. Adequate pre-preparation will make sure that the actual ________________is carried out under the safest conditions and accurate spray timing will help ensure that the product is used to optimum effect. Employers and applicator, worker or handlers must make sure that all safety equipment, clothing and aircraft loading equipment are clean and in a good state of repair.
 A. Application D. Spray pressure
 B. Spraying E. Accurate spray timing
 C. Maneuverability F. None of the Above
4. Enclosed cabs that provide respiratory protection must have a properly functioning ____________ that is used and maintained according to the manufacturer’s written operating instructions.
 A. Positive metering system(s) D. Venturi-type and rotary-slinger spreader(s)
 B. Vanes in the spreader(s) E. Ventilation system
 C. Type of respirator F. None of the Above

Advantages of Rotary Wing Aircraft
5. Rotary wing aircraft offers the advantages of extreme maneuverability and __________ variation, and may be operated in almost any local area.
 A. Application D. Spray pressure
 B. Respiratory protection E. Accurate spray timing
 C. Speed F. None of the Above

Sprayer Field Settings
6. During a flight, spray pressure, output and aircraft height above the crop can be adjusted if necessary however, as the pilot has to concentrate on flying the aircraft he may only occasionally check the ____________.
 A. Application D. Venturi spreader(s)
 B. Spraying system E. Spray pressure
 C. Agitator(s) F. None of the Above

Chemical Handling
7. To help keep sprayer-applicator, worker or handler exposure to a minimum, wherever possible preference must be given to using pesticide packs handled via ____________.
 A. Secure section D. Venturi spreader(s)
 B. Spraying system E. Closed transfer systems
 C. Agitator(s) F. None of the Above

Dry-Material Spreaders
8. ____________ and rotary-slinger spreaders are used to distribute dry formulations of herbicides, fertilizers, and seed.
 A. Positive metering system(s) D. Venturi-type
 B. Vanes in the spreader(s) E. Saddles
 C. Agitator(s) F. None of the Above

Swath Pattern Application
9. ____________ can be adjusted to control the, and the pattern should be tested for even distribution of materials upon initial spreader installation.
 A. Positive metering system(s) D. Venturi-type and rotary-slinger spreader(s)
 B. Vanes in the spreader(s) E. Absorbent material(s)
 C. Agitator(s) F. None of the Above

10. ____________ are valuable for metering pelleted herbicides or hard slick grass seed in fixed-wing aircraft. Chaffy grass seed can be especially difficult to meter and applicator, worker or handler “know-how” is valuable.
 A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
 B. Accurate deposition E. Most appropriate spraying equipment
 C. Positive metering systems F. None of the Above
Topic 2 Understanding Hydraulics and Sprayer Principles

1. Hydrodynamics, the study of liquids in motion, is concerned with such matters as friction and turbulence generated in pipes by flowing liquids, the flow of water over weirs and through_______, and the use of hydraulic pressure in machinery.
 A. Nozzle(s) D. Relative pressures of the liquid(s)
 B. Hydraulic line(s) E. Height of liquid column(s)
 C. Isobar(s) F. None of the Above

2. __________are almost incompressible.
 A. Liquid(s) D. Pressure(s)
 B. Hydraulic pressure(s) E. Volume(s)
 C. Velocity(s) F. None of the Above

Meteorology
3. The atmospheric pressure is of great importance in meteorology, since it determines the winds, which generally move at right angles to the direction of the most rapid change of pressure, that is, along the isobars, which are contours of_________. Certain typical weather patterns are associated with relatively high and relatively low pressures, and how they vary with time. The barometric pressure may be given in popular weather forecasts, though few people know what to do with it
 A. Spray nozzle(s) D. Relative pressures of the liquid(s)
 B. Hydraulic line(s) E. Height of liquid column(s)
 C. Constant pressure F. None of the Above

4. Velocity of flow is an important consideration in sizing the______________.
 A. Spray nozzle(s) D. Relative pressures of the liquid(s)
 B. Hydraulic line(s) E. Height of liquid column(s)
 C. Isobar(s) F. None of the Above

Bernoulli’s Principle
5. Bernoulli’s principle thus says that a rise (fall) in pressure in a __________must always be accompanied by a decrease (increase) in the speed, and conversely, if an increase (decrease) in, the speed of the fluid results in a decrease (increase) in the pressure.
 A. Liquids D. Flowing fluid
 B. Hydraulic pressure E. Volume of flow
 C. Velocity of flow F. None of the Above

Boom Sprayers
6. Most sprayers distribute pesticides using a boom with spray nozzles spaced at __________. The most common example would be wide horizontal booms used on field sprayers to spray field crops.
 A. Spray nozzle(s) D. Relative pressures of the liquid(s)
 B. Hydraulic line(s) E. Height of liquid column(s)
 C. Isobar(s) F. None of the Above
7. The full advantages of __________ are more likely to be realized when its use is preplanned. Development of a planned aerial application program will require good cooperation between pilot and grower.
 A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
 B. Accurate deposition E. Most appropriate spraying equipment
 C. Aerial application F. None of the Above

More on Ultra Low Volume
8. Ultra-Low Volume (ULV) equipment ranges in capacity from a few ounces to 1/2 gallon per acre. __________ and atomizing attachments such as Micronair, Mini-spin and Airfoil are frequently used to aid in droplet break-up.
 A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
 B. Accurate deposition E. Most appropriate spraying equipment
 C. Special metering F. None of the Above

Understanding Spray Nozzles
9. The nozzle type and pressure should be selected for the __________ and the atomization required for the job. Machines should be calibrated often to compensate for wear. The application rate (gallons per acre) will be set by the chemical being applied and the crop being treated as listed on the manufacturer's label.
 A. Ground temperature D. Material being used
 B. Application rate(s) E. Liquid dispersal system(s)
 C. Maximum output F. None of the Above

Ultra-Low Volume (ULV) Formulations and Temperature
10. When using__________, special consideration must be given to monitoring the air and ground temperature difference. This is one of the critical indicators of the time to quit treating for the day. The best weather for spraying treatment is usually from dawn until mid-morning.
 A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
 B. Accurate deposition E. Liquid ultra-low volume (ULV) formulations
 C. Pesticide labeling F. None of the Above
Topic 3 Understanding Pumps and Aerial Sprayers

Spray Nozzle Categorization

Application

1. Droplet micron size is determined by the specific nozzle used first and foremost. In general, the larger the orifice tube, the larger the micron size of the droplet produced. The second factor in determining droplet size is the__________________.
 A. Droplet produced D. Higher amounts of sprays
 B. Spray system E. Surface tension of a liquid
 C. Aircraft speed F. None of the Above

Distance between Nozzle and Target (Boom Height)

2. Less distance between the droplet release point and the ______________will reduce spray drift. Less distance means less time to travel from nozzle to target and therefore less drift occurs.
 A. Pesticide D. Target
 B. Droplet release point E. Sprayer calibration
 C. Higher amounts of sprays F. None of the Above

Drain Valve(s)

3. The drain valve(s) must be located at the lowest point(s) in the system to allow for complete draining of the spray system at the____________. The aircraft may also be used for other purposes during the course of the program which require draining the spray system before such use. Check all low points for drain valves or removable plugs that will allow draining the spray system.
 A. Droplet produced D. Higher amounts of sprays
 B. Spray system E. Surface tension of a liquid
 C. End of the program F. None of the Above

Emergency Shut-off Valve

4. The emergency shutoff valve should be located between the hopper and pump. The valve should be as close to the hopper as possible to prevent the loss of pesticide and damage to the environment in the_________________.
 A. Pesticide D. Event of a major spray system leak
 B. Droplet release point E. Sprayer calibration
 C. Higher amounts of sprays F. None of the Above

Electrostatic Sprayers

5. Electrostatic sprayers which apply ______________ to the material being sprayed reduce spraying time and improve insect and disease control per unit of chemical applied.
 A. Droplet produced D. Higher amounts of sprays
 B. Spray system E. An electrical charge
 C. Tap water or base oil F. None of the Above
6. Higher amounts of sprays from air-assisted electrostatic units were also found deeper in the crop canopy compared to the amounts delivered by uncharged hydraulic sprayers. These sprayers also deposit more ____________on any fruit present in the canopy, however.
 A. Pesticide D. Tension
 B. Droplet release point E. Spray
 C. Higher amounts of sprays F. None of the Above

Specific Gravity
7. Specific gravity is the ratio of the mass of a given volume of liquid to the mass of the same volume of water. In spraying, the main effect of the specific gravity S_g of a liquid other than water is on the capacity of the spray nozzle. All vendor-supplied performance data for nozzles are ________________.
 A. Droplet produced D. Higher amounts of sprays
 B. Spray system E. Surface tension of a liquid
 C. Based on spraying water F. None of the Above

Surface Tension
8. The surface tension of a liquid tends to assume the _______________, acting as a membrane under tension.
 A. Pesticide D. Pressure
 B. Droplet release point E. Smallest possible size
 C. Higher amounts of sprays F. None of the Above

9. Surface tension is more apparent at low operating pressures. A higher surface tension reduces the spray angle, particularly on hollow cone nozzles. Low surface tensions can allow nozzles to be operated at _________________.
 A. Droplet produced D. Higher amounts of sprays
 B. Spray system E. Lower pressures
 C. Tap water or base oil F. None of the Above

Liquid Application and Calculations
10. You should conduct sprayer calibration using tap water or base oil. Calibration depends on the ________________. After you have properly calibrated your equipment, it is ready to use. The next step is to read the label and find the site and pest which you are treating.
 A. Pesticide D. Tension
 B. Droplet release point E. Formulation applied and equipment used
 C. Higher amounts of sprays F. None of the Above
Topic 4 Aerial Application Assignment and Control Information Section

Aircraft Facilities
Airports and Airstrips
1. Airports or airstrips must be of __________ to handle the aircraft that may be used for the program. Hard-surfaced runways are desirable when large multi-engine aircraft are used. The contractor/pilot must complete all arrangements necessary to use any airport.
 A. Application D. Adequate size
 B. Shorter E. Average sod conditions
 C. Maneuverability F. None of the Above

Minimum Airstrip Sizes
2. The airstrip lengths shown below are for runways with clear approaches and __________ at an elevation of approximately 4,000 feet above sea level. At higher elevations or when fields are soft, longer airstrips will be required. Hard-surfaced runways at lower elevations may be somewhat shorter.
 A. Application D. Adequate size
 B. Shorter E. Average sod conditions
 C. Maneuverability F. None of the Above

Notify Beekeepers
3. Many of the pesticides used in aerial treatments are highly toxic to bees. Notify beekeepers about the meetings. Program operational guidelines, environmental impact statements, ___________. State laws, and/or pesticide labels may also require that beekeepers in the area be notified of control programs.
 A. Environmental application D. Environmental issues
 B. Environmental protection E. Accurate spraying
 C. Environmental assessments (EA) F. None of the Above

Spray Block, Sensitive Area, and Buffer Zone Verification
4. After taking a ___________ flight with each pilot and confirming that everything (buffer zones, spray blocks, and sensitive areas) is recorded on a master program map, then jointly sign and date the map. When observation aircraft are not available, then using ground vehicles to show pilots and/or flaggers their assigned blocks may be necessary.
 A. Application D. Spraying reconnaissance
 B. Pretreatment reconnaissance E. Test reconnaissance
 C. Maneuverability F. None of the Above

Spray Deposition Monitoring
Dyecard Samplers
5. Use dyecards to monitor ________________.
 A. Nozzle or nozzle group output D. Liquid formulation spray deposition
 B. Pesticide absorption E. Row spacing
 C. Uniform distribution F. None of the Above
6. Dyecards are made of water- or oil-sensitive paper and are used to provide valuable information on swath width, spray droplet deposition pattern, and droplet size; and to identify leaks in the______________.
A. Application D. Liquid formulation spray deposition
B. Spray system E. Nozzle or nozzle group output
C. Boom F. None of the Above

Spray Boom Calibration
7. Use chart for distance to drive in the field. Use nozzle spacing for ____________. For directed and band rigs use the row spacing.
A. Application D. Liquid formulation spray deposition
B. Spray system E. Nozzle or nozzle group output
C. Booms F. None of the Above

8. Set throttle for ___________ and operate all equipment. Note seconds required to drive measured distance.
A. Application D. Spray pressure
B. Spraying E. Accurate spray timing
C. Extreme maneuverability F. None of the Above

9. Catch spray for the noted time in Step 2 in container marked in ounces. If boom, catch spray from one nozzle during noted time. On directed rigs, catch spray from all nozzles per row for noted time. ______________ output in ounces = gallons/acre actually applied.
A. Nozzle or nozzle group D. Liquid formulation spray deposition
B. Pesticide E. Spray pressure
C. Uniform distribution F. None of the Above

10. Repeat for each nozzle to assure ______________. Replace any nozzles whose output is greater than 10% of the average of all nozzles.
A. Nozzle or nozzle group D. Liquid formulation spray deposition
B. Pesticide distribution E. Spray pressure
C. Uniform distribution F. None of the Above
Topic 5 Pesticide Drift Control and Training Requirements

The EPA defines spray or dust drift as:

1. "the physical movement of ______________ through the air at the time of pesticide application or soon thereafter from the target site to any non- or off-target site. Spray drift shall not include movement of pesticides to non- or off-target sites caused by erosion, migration, volatility, or windblown soil particles that occurs after application or application of fumigants unless specifically addressed on the product label with respect to drift control requirements."

A. Granular material(s) D. Organochlorine pesticide(s)
B. Pesticide droplets or particles E. Spray pressure, output and aircraft height
C. Chemical control F. None of the Above

Pesticide Residues

2. Pesticide residues are generally meant to include pesticides that are detectible in or on places other than ______________. Fresh water reservoirs, stream bed sediments, and harvested food would be examples of places that would be tested for pesticide residues.

A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
B. Accurate deposition E. Most appropriate spraying equipment
C. Their intended target F. None of the Above

Understanding the Dangers of Drift

3. Droplet size depends primarily upon the spray pressure, nozzle design and orientation, and the __________. The size of granular materials depends upon the particular formulation and can be controlled to some extent by screening. In the case of sprays, droplet size is generally increased by reducing pressures or increasing nozzle size.

A. Granular material(s) D. Surface tension of the spray solution
B. Pesticide droplets or particles E. Spray pressure, output and aircraft height
C. Chemical control F. None of the Above

Vapor Drift (Volatilization)

4. Hot temperatures, moist soils, and temperature inversions all increase the potential for vapor drift. ______________ is not movement of material caused by wind. In fact, calm or no wind may lead to inversions that could result in vapor drift. Vapor drift can be avoided by simply refraining from the use of ester-containing formulations of 2,4-D.

A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
B. Accurate deposition E. Most appropriate spraying equipment
C. Vapor drift F. None of the Above

Chemical Control in an IPM Program

5. Regular field scouting, coupled with forecasting pest problems and determining economic thresholds, is used to ensure that ____________ are only applied when pest populations warrant chemical control.

A. Granular material(s) D. Pesticides
B. Pesticide droplets or particles E. Spray pressure, output and aircraft height
C. Chemical control F. None of the Above
Bowen's Disease
6. ______________involving arsenic powders has been implicated in Bowen's disease. However, lead arsenic has not been used by aerial applicators or in any other form of agriculture for three decades because of the adverse effects to human health that were not as well known when the powder was legal.
A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
B. Accurate deposition E. Most appropriate spraying equipment
C. Crop dusting F. None of the Above

Environmental Effects
Effects on Non-target Species
7. A number of the ____________ have been banned from most uses worldwide, and globally they are controlled via the Stockholm Convention on persistent organic pollutants. These include: aldrin, chlordane, DDT, dieldrin, endrin, heptachlor, mirex and toxaphene.
A. Granular material(s) D. Organochlorine pesticide(s)
B. Volatile herbicide(s) E. The phenoxy group of herbicides
C. Chemical control(s) F. None of the Above

Meteorological Considerations
8. The distance a spray droplet travels depends on the droplet size and downward velocity, the release height and the ambient conditions. Vortices created by the aircraft passage will also influence__________________.
A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
B. Accurate deposition E. Most appropriate spraying equipment
C. Spray distribution efficiency F. None of the Above

Sprayer Field Settings
9. During a flight, ______________, output and aircraft height above the crop can be adjusted if necessary however, as the pilot has to concentrate on flying the aircraft he may only occasionally check the spraying system.
A. Granular material(s) D. Ultra-low volume application of pesticide(s)
B. Pesticide droplets or particles E. Spray pressure
C. Chemical control F. None of the Above

Equipment Storage
10. Refer to the relevant applicator, ____________instruction manuals for both the spray equipment and the aircraft. Aircraft mounted spray equipment is often removed after spraying to release the aircraft for other duties. Both the spray equipment and the aircraft must be thoroughly cleaned (“decontaminated”) and dried, before being stored.
A. Handler(s) D. Early-entry workers
B. Agricultural employer(s) E. Worker or handler’s
C. Employee(s) F. None of the Above
Specific Restrictions
1. Specific restrictions may include prohibiting the use of certain pesticides under certain conditions, prohibiting certain methods of application, requiring use of a foliage barrier, or requiring a buffer zone distance between the site of ________________ to be protected.
A. Nozzle or nozzle group output D. Application site
B. Application and areas E. Row spacing
C. Uniform distribution F. None of the Above

2. During the past few years, the OPP has received and reviewed new studies on spray drift that it required from pesticide registrants to support their product registrations. The OPP has completed its review of these studies and reached conclusions about the factors that influence drift and the amounts of sprays which can drift from the ________________.
A. Nozzle or nozzle group output D. Application site
B. Application and areas E. Row spacing
C. Uniform distribution F. None of the Above

Droplet Drift
3. The distance of droplet drift depends upon the size of the droplets, the velocity of the wind and the height above the ground where the herbicide is discharged. In general, larger orifices and _________________.
A. The size of the droplet(s) D. Higher pressures result in larger droplets
B. The wider the drift E. Lower pressures result in larger droplets
C. The lesser the drift F. None of the Above

Vapor Drift
4. Volatility refers to the ability of a herbicide to vaporize and to mix freely with the air. Volatile herbicides may produce _______________ that can be carried great distances from the target area to other crop sites.
A. The size of the droplet(s) D. Vapors
B. Drift E. Mists
C. Spray F. None of the Above

Phenoxy Herbicides
5. The phenoxy group of herbicides has been most often involved in crop injury by off-target drift. _______________ includes 2,4-D, 2,4,5-T, 2,4-DB, 2,4,5-TP (Silvex) and MCPA. These herbicides are most commonly used for the control of broad-leaved weeds in crops and for the control of undesirable woody species.
A. Phenoxy herbicides D. The phenoxy group
B. Esters E. Esters or amines
C. Volatile herbicide(s) F. None of the Above

6. ______________ in general are formulated in two ways, as esters or amines.
A. Phenoxy herbicides D. The phenoxy group of herbicides
B. Esters E. Esters or amines
C. Volatile herbicide(s) F. None of the Above
7. ___________ are more effective in controlling hard-to-kill weeds but are the most hazardous in terms of volatility and consequent drift to sensitive crops.
A. Phenoxy herbicides D. The phenoxy group of herbicides
B. Esters E. Esters or amines
C. Volatile herbicide(s) F. None of the Above

Other Components
8. Flow control devices are necessary to make the tank, pump and nozzles work together. Depending on the application system, these devices may include pressure regulators, unloader valves and control valves. Because both the ___________ and flow rate are determined by operating pressure, each sprayer should be equipped with a pressure gauge.
A. Nozzle or nozzle group output D. Liquid formulation spray deposition
B. Spray pattern E. Row spacing
C. Uniform distribution F. None of the Above

9. The gauge should be placed where it may be easily seen. Strainers are also required for effective treatments. Strainers trap particles and debris in the spray mixture and protect the pump, ___________ and nozzles from damage.
A. Nozzle or nozzle group output D. Liquid formulation spray deposition
B. Pesticide sprayer E. Control devices
C. Uniform distribution F. None of the Above

Dispersal Summary
10. All nozzles produce a range of ___________. The small, drift-prone particles cannot be eliminated but can be reduced and kept within reasonable limits.
A. Nozzle or nozzle group output D. Liquid formulation spray deposition
B. Pesticide drift E. Droplet sizes
C. Uniform distribution F. None of the Above
Topic 7 Aerial and Agricultural Pesticides

Fenthion
1. Due to its relatively low toxicity towards humans and mammals, ____________ is listed as moderately toxic compound in U.S. Environmental Protection Agency and World Health Organization toxicity class
 A. Insect growth regulator D. Hormonal IGRs
 B. Fenthion E. Benzamide
 C. Benzoyl-phenylurea termiticide F. None of the Above

Malathion
2. Malathion is a(n) ____________ parasympathomimetic which binds irreversibly to cholinesterase. Malathion is an insecticide of relatively low human toxicity; however recent studies have shown that children with higher levels of Malathion in their urine seem to be at an increased risk of attention deficit hyperactivity disorder.
 A. Insect growth regulator D. Hormonal IGRs
 B. Organophosphate E. Benzamide
 C. Benzoyl-phenylurea F. None of the Above

Permethrin
3. Permethrin is a broad-spectrum pyrethroid insecticide. It is available in dusts, emulsifiable concentrates, smokes, ULV concentrates, and wettable-powder formulations. The historical development of the ____________ is based on the pyrethrins, which are derived from chrysanthemums.
 A. Insect growth regulator D. Hormonal IGRs
 B. Chitin E. Benzamide
 C. Benzoyl-phenylurea termiticide F. None of the Above

4. ____________ have been synthesized to be similar to pyrethrins yet more stable in the environment. Evidence suggests that they have a very large margin of safety when used as directed by the label (Aldridge, 1990; Chen et al., 1991; Snodgrass, 1992).
 A. Benzamide(s) D. Restricted pesticide(s)
 B. Pyrethroid(s) E. Organophosphate(s)
 C. Pyrethin(s) F. None of the Above

Adsorption Process
5. ____________ often occurs because of the attraction between a chemical and soil particles.
 A. Restricted pesticide(s) D. Pesticide chemical application(s)
 B. Action threshold(s) E. Compatibility agent(s)
 C. Adsorption F. None of the Above

Pesticide Transfer
6. Five ways that pesticides can be transferred are through__________, runoff, leaching, absorption and crop removal.
 A. Volatilization D. Environmental factors
 B. Movement E. Pesticide chemical application(s)
 C. Photodegradation F. None of the Above
Volatilization
7. Volatilization occurs when a pesticide partitions from the solid or aqueous phase to the ________________. Once volatilized, a pesticide may diffuse into the atmosphere and either be destroyed or continue as an environmental risk. When mixing disturbs a soil contaminated by a pesticide or other organic compound, a 30 percent or greater loss of the soil contaminant through volatilization is not unusual.
A. Solid
B. Liquid
C. Photodegradation
D. Environmental
E. Pesticide chemical application(s)
F. None of the Above

Thermophilic Temperatures
8. Moisture also affects volatilization rates. Water may physically impede the flow of a gas phase pesticide by obstructing the pores through which gases travel. ________________ may also promote volatilization by liberating weakly adsorbed pesticides.
A. Water
B. Ultra-low volume application of pesticide(s)
C. Action threshold(s)
D. Environmental factors
E. Photodegradation
F. None of the Above

Photodegradation
9. Factors that influence pesticide photodegradation include the intensity of the sunlight, properties of the application site, the application method and the properties of the pesticide. ________________ from photodegradation can be reduced by adding the pesticide to the soil during or immediately after application.
A. Restricted pesticide(s)
B. Action threshold(s)
C. Pesticide losses
D. Pesticide chemical application(s)
E. Compatibility agent(s)
F. None of the Above

Proper Pesticide Handling
10. Care must be exercised in cleaning equipment, clothing, and persons working with ________________. Additionally, special precautions are necessary if pesticides are spilled or catch fire. Certain materials associated with vector control operations, including some pesticides, are considered by EPA and DPR to represent hazardous wastes.
A. Restricted pesticide(s)
B. Pesticides
C. Agriculture pesticides
D. Pesticide chemical application(s)
E. Pesticides and compatibility agent(s)
F. None of the Above
Aerial Application CEU Training Assignment #4
Last Names A-G

You will have 90 days from the start of this course to have successfully passed this assignment with a score of 70 %. You may e-mail the answers to TLC, info@tch2o.com or fax the answers to TLC, (928) 272-0747. This assignment is available to you in a Word Format on TLC’s Website. You can find online assistance for this course on the in the Search function on Adobe Acrobat PDF to help find the answers. Once you have paid the course fee, you will be provided complete course support from Student Services (928) 468-0665.

Write your answers on the Answer Key found in the front of this assignment.
1. We will require all students to fax or e-mail a copy of their driver’s license with the registration form.
2. You will need to pick one of the following four assignments to complete. This selection process is based upon your last name.
3. If your last name begins with an A to G, you will pick assignment number 4, if your last name begins with the letter H to P, you are to complete assignment number 3 and if your last name begins with the letter Q-R, you will pick assignment number 2, and if your last name begins with the letter S-Z, you will pick assignment number 1.

There are no intention trick questions. All questions require the specific answer as found in the text.

Topic 1 Aerial Application Introduction
Ultra-Low Volume (ULV)

1. The term Ultra-Low Volume (ULV) (spraying) is used in the context of
 A. Application D. Spray pressure
 B. Pesticide application E. Accurate spray timing
 C. Extreme maneuverability F. None of the Above

2. ____________application of pesticides has been defined as spraying at a Volume Application Rate (VAR) of less than 5 L/ha for field crops or less than 50 L/ha for tree/bush crops.
 A. Positive metering system(s) D. Venturi-type and rotary-slinger spreader(s)
 B. Vanes in the spreader(s) E. Absorbent material(s)
 C. Ultra-low volume F. None of the Above

Field Application
3. Adequate pre-preparation will make sure that the actual __________is carried out under the safest conditions and accurate spray timing will help ensure that the product is used to optimum effect. Employers and applicator, worker or handlers must make sure that all safety equipment, clothing and aircraft loading equipment are clean and in a good state of repair.
 A. Application D. Spray pressure
 B. Spraying E. Accurate spray timing
 C. Maneuverability F. None of the Above
4. Rotary wing aircraft offers the advantages of extreme maneuverability and ______________ variation, and may be operated in almost any local area.
 A. Application D. Spray pressure
 B. Respiratory protection E. Accurate spray timing
 C. Speed F. None of the Above

5. ___________ is relatively easy to achieve with most ground-based directed spraying, but spray application with fixed and rotary wing aircraft presents more complex problems.
 A. Application D. Spray pressure
 B. Acceptable spray distribution E. Accurate spray timing
 C. Extreme maneuverability F. None of the Above

Sprayer Field Settings

6. The use of ___________ within the treated crop is strongly recommended to check and evaluate spray deposit efficiency as well as confirm the lane separation distances. This is where the ground staff can report back to the pilot, via the radio, any problems with the spraying system such as blocked nozzles or incorrectly operating atomizers.
 A. Positive metering system(s) D. Venturi-type and rotary-slinger spreader(s)
 B. Vanes in the spreader(s) E. Artificial targets
 C. Agitator(s) F. None of the Above

Chemical Handling

7. To help keep sprayer-applicator, worker or handler exposure to a minimum, wherever possible preference must be given to using pesticide packs handled via ____________.
 A. Secure section D. Venturi spreader(s)
 B. Spraying system E. Closed transfer systems
 C. Agitator(s) F. None of the Above

8. Fixed-wing aircraft use venturi spreaders while helicopters use rotary spreaders. Venturi spreaders clamp to the gate box at the ______________.
 A. Secure section D. Base of the hopper
 B. Spraying system E. Spray pressure
 C. Agitator(s) F. None of the Above

9. Agitators are available to assist the __________ from the hopper.
 A. Secure section D. Venturi spreader(s)
 B. Spraying system E. Spray pressure
 C. Flow of material F. None of the Above

10. ___________ are valuable for metering pelleted herbicides or hard slick grass seed in fixed-wing aircraft. Chaffy grass seed can be especially difficult to meter and applicator, worker or handler “know-how” is valuable.
 A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
 B. Accurate deposition E. Most appropriate spraying equipment
 C. Positive metering systems F. None of the Above
Topic 2 Understanding Hydraulics and Sprayer Principles

1. Hydrodynamics, the study of liquids in motion, is concerned with such matters as friction and turbulence generated in pipes by flowing liquids, the flow of water over weirs and through_______, and the use of hydraulic pressure in machinery.
 A. Nozzle(s) D. Relative pressures of the liquid(s)
 B. Hydraulic line(s) E. Height of liquid column(s)
 C. Isobar(s) F. None of the Above

2. __________are almost incompressible.
 A. Liquid(s) D. Pressure(s)
 B. Hydraulic pressure(s) E. Volume(s)
 C. Velocity(s) F. None of the Above

Meteorology
3. The atmospheric pressure is of great importance in meteorology, since it determines the winds, which generally move at right angles to the direction of the most rapid change of pressure, that is, along the isobars, which are contours of__________. Certain typical weather patterns are associated with relatively high and relatively low pressures, and how they vary with time. The barometric pressure may be given in popular weather forecasts, though few people know what to do with it
 A. Spray nozzle(s) D. Relative pressures of the liquid(s)
 B. Hydraulic line(s) E. Height of liquid column(s)
 C. Constant pressure F. None of the Above

4. Velocity of flow is an important consideration in sizing the______________.
 A. Spray nozzle(s) D. Relative pressures of the liquid(s)
 B. Hydraulic line(s) E. Height of liquid column(s)
 C. Isobar(s) F. None of the Above

Bernoulli’s Principle
5. Bernoulli’s principle thus says that a rise (fall) in pressure in a __________must always be accompanied by a decrease (increase) in the speed, and conversely, if an increase (decrease) in, the speed of the fluid results in a decrease (increase) in the pressure.
 A. Liquids D. Flowing fluid
 B. Hydraulic pressure E. Volume of flow
 C. Velocity of flow F. None of the Above

Boom Sprayers
6. Most sprayers distribute pesticides using a boom with spray nozzles spaced at __________. The most common example would be wide horizontal booms used on field sprayers to spray field crops.
 A. Spray nozzle(s) D. Relative pressures of the liquid(s)
 B. Hydraulic line(s) E. Height of liquid column(s)
 C. Isobar(s) F. None of the Above
7. The full advantages of ____________ are more likely to be realized when its use is preplanned. Development of a planned aerial application program will require good cooperation between pilot and grower.
A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
B. Accurate deposition E. Most appropriate spraying equipment
C. Aerial application F. None of the Above

More on Ultra Low Volume
8. Ultra-Low Volume (ULV) equipment ranges in capacity from a few ounces to 1/2 gallon per acre. ____________ and atomizing attachments such as Micronair, Mini-spin and Airfoil are frequently used to aid in droplet break-up.
A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
B. Accurate deposition E. Most appropriate spraying equipment
C. Special metering F. None of the Above

Understanding Spray Nozzles
9. The nozzle type and pressure should be selected for the ____________ and the atomization required for the job. Machines should be calibrated often to compensate for wear. The application rate (gallons per acre) will be set by the chemical being applied and the crop being treated as listed on the manufacturer's label.
A. Ground temperature D. Material being used
B. Application rate(s) E. Liquid dispersal system(s)
C. Maximum output F. None of the Above

Ultra-Low Volume (ULV) Formulations and Temperature
10. When using ____________, special consideration must be given to monitoring the air and ground temperature difference. This is one of the critical indicators of the time to quit treating for the day. The best weather for spraying treatment is usually from dawn until mid-morning.
A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
B. Accurate deposition E. Liquid ultra-low volume (ULV) formulations
C. Pesticide labeling F. None of the Above
Topic 3 Understanding Pumps and Aerial Sprayers

Spray Nozzle Categorization

Application
1. Droplet micron size is determined by the specific nozzle used first and foremost. In general, the larger the orifice tube, the larger the micron size of the droplet produced. The second factor in determining droplet size is the__________________.
 A. Droplet produced D. Higher amounts of sprays
 B. Spray system E. Surface tension of a liquid
 C. Aircraft speed F. None of the Above

Distance between Nozzle and Target (Boom Height)
2. Less distance between the droplet release point and the _____________ will reduce spray drift. Less distance means less time to travel from nozzle to target and therefore less drift occurs.
 A. Pesticide D. Target
 B. Droplet release point E. Sprayer calibration
 C. Higher amounts of sprays F. None of the Above

Drain Valve(s)
3. The drain valve(s) must be located at the lowest point(s) in the system to allow for complete draining of the spray system at the____________. The aircraft may also be used for other purposes during the course of the program which require draining the spray system before such use. Check all low points for drain valves or removable plugs that will allow draining the spray system.
 A. Droplet produced D. Higher amounts of sprays
 B. Spray system E. Surface tension of a liquid
 C. End of the program F. None of the Above

Emergency Shut-off Valve
4. The emergency shutoff valve should be located between the hopper and pump. The valve should be as close to the hopper as possible to prevent the loss of pesticide and damage to the environment in the__________________.
 A. Pesticide D. Event of a major spray system leak
 B. Droplet release point E. Sprayer calibration
 C. Higher amounts of sprays F. None of the Above

Electrostatic Sprayers
5. Electrostatic sprayers which apply _____________ to the material being sprayed reduce spraying time and improve insect and disease control per unit of chemical applied.
 A. Droplet produced D. Higher amounts of sprays
 B. Spray system E. An electrical charge
 C. Tap water or base oil F. None of the Above
6. Higher amounts of sprays from air-assisted electrostatic units were also found deeper in the crop canopy compared to the amounts delivered by uncharged hydraulic sprayers. These sprayers also deposit more _______________ on any fruit present in the canopy, however.
A. Pesticide D. Tension
B. Droplet release point E. Spray
C. Higher amounts of sprays F. None of the Above

Specific Gravity
7. Specific gravity is the ratio of the mass of a given volume of liquid to the mass of the same volume of water. In spraying, the main effect of the specific gravity Sg of a liquid other than water is on the capacity of the spray nozzle. All vendor-supplied performance data for nozzles are___________________.
A. Droplet produced D. Higher amounts of sprays
B. Spray system E. Surface tension of a liquid
C. Based on spraying water F. None of the Above

Surface Tension
8. The surface tension of a liquid tends to assume the_______________, acting as a membrane under tension.
A. Pesticide D. Pressure
B. Droplet release point E. Smallest possible size
C. Higher amounts of sprays F. None of the Above

9. Surface tension is more apparent at low operating pressures. A higher surface tension reduces the spray angle, particularly on hollow cone nozzles. Low surface tensions can allow nozzles to be operated at___________________.
A. Droplet produced D. Higher amounts of sprays
B. Spray system E. Lower pressures
C. Tap water or base oil F. None of the Above

Liquid Application and Calculations
10. You should conduct sprayer calibration using tap water or base oil. Calibration depends on the_________________. After you have properly calibrated your equipment, it is ready to use. The next step is to read the label and find the site and pest which you are treating.
A. Pesticide D. Tension
B. Droplet release point E. Formulation applied and equipment used
C. Higher amounts of sprays F. None of the Above
Topic 4 Aerial Application Assignment and Control Information
Section

Aircraft Facilities
Airports and Airstrips
1. Airports or airstrips must be of __________ to handle the aircraft that may be used for
the program. Hard-surfaced runways are desirable when large multi-engine aircraft are
used. The contractor/pilot must complete all arrangements necessary to use any airport.
A. Application D. Adequate size
B. Shorter E. Average sod conditions
C. Maneuverability F. None of the Above

Minimum Airstrip Sizes
2. The airstrip lengths shown below are for runways with clear approaches and
___________ at an elevation of approximately 4,000 feet above sea level. At higher
elevations or when fields are soft, longer airstrips will be required. Hard-surfaced runways
at lower elevations may be somewhat shorter.
A. Application D. Adequate size
B. Shorter E. Average sod conditions
C. Maneuverability F. None of the Above

Notify Beekeepers
3. Many of the pesticides used in aerial treatments are highly toxic to bees. Notify
beekeepers about the meetings. Program operational guidelines, environmental impact
statements, ______________, State laws, and/or pesticide labels may also require that
beekeepers in the area be notified of control programs.
A. Environmental application D. Environmental issues
B. Environmental protection E. Accurate spraying
C. Environmental assessments (EA) F. None of the Above

Spray Block, Sensitive Area, and Buffer Zone Verification
4. After taking a ______________ flight with each pilot and confirming that everything
(buffer zones, spray blocks, and sensitive areas) is recorded on a master program map,
then jointly sign and date the map. When observation aircraft are not available, then using
ground vehicles to show pilots and/or flaggers their assigned blocks may be necessary.
A. Application D. Spraying reconnaissance
B. Pretreatment reconnaissance E. Test reconnaissance
C. Maneuverability F. None of the Above

Spray Deposition Monitoring
Dyecard Samplers
5. Use dyecards to monitor ______________.
A. Nozzle or nozzle group output D. Liquid formulation spray deposition
B. Pesticide absorption E. Row spacing
C. Uniform distribution F. None of the Above
6. Dyecards are made of water- or oil-sensitive paper and are used to provide valuable information on swath width, spray droplet deposition pattern, and droplet size; and to identify leaks in the_____________.
 A. Application
 B. Spray system
 C. Boom
 D. Liquid formulation spray deposition
 E. Nozzle or nozzle group output
 F. None of the Above

Spray Boom Calibration
7. Use chart for distance to drive in the field. Use nozzle spacing for __________. For directed and band rigs use the row spacing.
 A. Application
 B. Spray system
 C. Booms
 D. Liquid formulation spray deposition
 E. Nozzle or nozzle group output
 F. None of the Above

8. Set throttle for ___________ and operate all equipment. Note seconds required to drive measured distance.
 A. Application
 B. Spraying
 C. Extreme maneuverability
 D. Spray pressure
 E. Accurate spray timing
 F. None of the Above

9. Catch spray for the noted time in Step 2 in container marked in ounces. If boom, catch spray from one nozzle during noted time. On directed rigs, catch spray from all nozzles per row for noted time. ______________ output in ounces = gallons/acre actually applied.
 A. Nozzle or nozzle group
 B. Pesticide
 C. Uniform distribution
 D. Liquid formulation spray deposition
 E. Spray pressure
 F. None of the Above

10. Repeat for each nozzle to assure _____________. Replace any nozzles whose output is greater than 10 % of the average of all nozzles.
 A. Nozzle or nozzle group
 B. Pesticide distribution
 C. Uniform distribution
 D. Liquid formulation spray deposition
 E. Spray pressure
 F. None of the Above

Topic 5 Pesticide Drift Control and Training Requirements

The EPA defines spray or dust drift as:
1. "the physical movement of ___________through the air at the time of pesticide application or soon thereafter from the target site to any non- or off-target site. Spray drift shall not include movement of pesticides to non- or off-target sites caused by erosion, migration, volatility, or windblown soil particles that occurs after application or application of fumigants unless specifically addressed on the product label with respect to drift control requirements."

A. Granular material(s) D. Organochlorine pesticide(s)
B. Pesticide droplets or particles E. Spray pressure, output and aircraft height
C. Chemical control F. None of the Above

Pesticide Residues
2. Pesticide residues are generally meant to include pesticides that are detectible in or on places other than ___________. Fresh water reservoirs, stream bed sediments, and harvested food would be examples of places that would be tested for pesticide residues.

A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
B. Accurate deposition E. Most appropriate spraying equipment
C. Their intended target F. None of the Above

Understanding the Dangers of Drift
3. Droplet size depends primarily upon the spray pressure, nozzle design and orientation, and the ___________. The size of granular materials depends upon the particular formulation and can be controlled to some extent by screening. In the case of sprays, droplet size is generally increased by reducing pressures or increasing nozzle size.

A. Granular material(s) D. Surface tension of the spray solution
B. Pesticide droplets or particles E. Spray pressure, output and aircraft height
C. Chemical control F. None of the Above

Vapor Drift (Volatilization)
4. Hot temperatures, moist soils, and temperature inversions all increase the potential for vapor drift. ___________ is not movement of material caused by wind. In fact, calm or no wind may lead to inversions that could result in vapor drift. Vapor drift can be avoided by simply refraining from the use of ester-containing formulations of 2,4-D.

A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
B. Accurate deposition E. Most appropriate spraying equipment
C. Vapor drift F. None of the Above

Chemical Control in an IPM Program
5. Regular field scouting, coupled with forecasting pest problems and determining economic thresholds, is used to ensure that ___________ are only applied when pest populations warrant chemical control.

A. Granular material(s) D. Pesticides
B. Pesticide droplets or particles E. Spray pressure, output and aircraft height
C. Chemical control F. None of the Above
Bowen's Disease
6. ______________involving arsenic powders has been implicated in Bowen's disease. However, lead arsenic has not been used by aerial applicators or in any other form of agriculture for three decades because of the adverse effects to human health that were not as well known when the powder was legal.
A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
B. Accurate deposition E. Most appropriate spraying equipment
C. Crop dusting F. None of the Above

Environmental Effects
Effects on Non-target Species
7. A number of the ____________ have been banned from most uses worldwide, and globally they are controlled via the Stockholm Convention on persistent organic pollutants. These include: aldrin, chlordane, DDT, dieldrin, endrin, heptachlor, mirex and toxaphene.
A. Granular material(s) D. Organochlorine pesticide(s)
B. Volatile herbicide(s) E. The phenoxy group of herbicides
C. Chemical control(s) F. None of the Above

Meteorological Considerations
8. The distance a spray droplet travels depends on the droplet size and downward velocity, the release height and the ambient conditions. Vortices created by the aircraft passage will also influence__________________.
A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
B. Accurate deposition E. Most appropriate spraying equipment
C. Spray distribution efficiency F. None of the Above

Sprayer Field Settings
9. During a flight, ______________, output and aircraft height above the crop can be adjusted if necessary however, as the pilot has to concentrate on flying the aircraft he may only occasionally check the spraying system.
A. Granular material(s) D. Ultra-low volume application of pesticide(s)
B. Pesticide droplets or particles E. Spray pressure
C. Chemical control F. None of the Above

Equipment Storage
10. Refer to the relevant applicator, ____________instruction manuals for both the spray equipment and the aircraft. Aircraft mounted spray equipment is often removed after spraying to release the aircraft for other duties. Both the spray equipment and the aircraft must be thoroughly cleaned (“decontaminated”) and dried, before being stored.
A. Handler(s) D. Early-entry workers
B. Agricultural employer(s) E. Worker or handler’s
C. Employee(s) F. None of the Above
Specific Restrictions
1. Specific restrictions may include prohibiting the use of certain pesticides under certain conditions, prohibiting certain methods of application, requiring use of a foliage barrier, or requiring a buffer zone distance between the site of ________________ to be protected.
 A. Nozzle or nozzle group output D. Application site
 B. Application and areas E. Row spacing
 C. Uniform distribution F. None of the Above

2. During the past few years, the OPP has received and reviewed new studies on spray drift that it required from pesticide registrants to support their product registrations. The OPP has completed its review of these studies and reached conclusions about the factors that influence drift and the amounts of sprays which can drift from the_________________.
 A. Nozzle or nozzle group output D. Application site
 B. Application and areas E. Row spacing
 C. Uniform distribution F. None of the Above

Droplet Drift
3. The distance of droplet drift depends upon the size of the droplets, the velocity of the wind and the height above the ground where the herbicide is discharged. In general, larger orifices and_________________.
 A. The size of the droplet(s) D. Higher pressures result in larger droplets
 B. The wider the drift E. Lower pressures result in larger droplets
 C. The lesser the drift F. None of the Above

Vapor Drift
4. Volatility refers to the ability of a herbicide to vaporize and to mix freely with the air. Volatile herbicides may produce ________________that can be carried great distances from the target area to other crop sites.
 A. The size of the droplet(s) D. Vapors
 B. Drift E. Mists
 C. Spray F. None of the Above

Phenoxy Herbicides
5. The phenoxy group of herbicides has been most often involved in crop injury by off-target drift. ________________ includes 2,4-D, 2,4,5-T, 2,4-DB, 2,4,5-TP (Silvex) and MCPA. These herbicides are most commonly used for the control of broad-leaved weeds in crops and for the control of undesirable woody species.
 A. Phenoxy herbicides D. The phenoxy group
 B. Esters E. Esters or amines
 C. Volatile herbicide(s) F. None of the Above

6. ________________ in general are formulated in two ways, as esters or amines.
 A. Phenoxy herbicides D. The phenoxy group of herbicides
 B. Esters E. Esters or amines
 C. Volatile herbicide(s) F. None of the Above
7. ___________ are more effective in controlling hard-to-kill weeds but are the most hazardous in terms of volatility and consequent drift to sensitive crops.
 A. Phenoxy herbicides D. The phenoxy group of herbicides
 B. Esters E. Esters or amines
 C. Volatile herbicide(s) F. None of the Above

Other Components
8. Flow control devices are necessary to make the tank, pump and nozzles work together. Depending on the application system, these devices may include pressure regulators, unloader valves and control valves. Because both the ___________ and flow rate are determined by operating pressure, each sprayer should be equipped with a pressure gauge.
 A. Nozzle or nozzle group output D. Liquid formulation spray deposition
 B. Spray pattern E. Row spacing
 C. Uniform distribution F. None of the Above

9. The gauge should be placed where it may be easily seen. Strainers are also required for effective treatments. Strainers trap particles and debris in the spray mixture and protect the pump, ___________ and nozzles from damage.
 A. Nozzle or nozzle group output D. Liquid formulation spray deposition
 B. Pesticide sprayer E. Control devices
 C. Uniform distribution F. None of the Above

Dispersal Summary
10. All nozzles produce a range of ___________. The small, drift-prone particles cannot be eliminated but can be reduced and kept within reasonable limits.
 A. Nozzle or nozzle group output D. Liquid formulation spray deposition
 B. Pesticide drift E. Droplet sizes
 C. Uniform distribution F. None of the Above
Topic 7 Aerial and Agricultural Pesticides

Fenthion
1. Due to its relatively low toxicity towards humans and mammals, __________ is listed as moderately toxic compound in U.S. Environmental Protection Agency and World Health Organization toxicity class
 A. Insect growth regulator D. Hormonal IGRs
 B. Fenthion E. Benzamide
 C. Benzoyl-phenylurea termiticide F. None of the Above

Malathion
2. Malathion is a(n) ____________ parasympathomimetic which binds irreversibly to cholinesterase. Malathion is an insecticide of relatively low human toxicity; however recent studies have shown that children with higher levels of Malathion in their urine seem to be at an increased risk of attention deficit hyperactivity disorder.
 A. Insect growth regulator D. Hormonal IGRs
 B. Organophosphate E. Benzamide
 C. Benzoyl-phenylurea termiticide F. None of the Above

Permethrin
3. Permethrin is a broad-spectrum pyrethroid insecticide. It is available in dusts, emulsifiable concentrates, smokes, ULV concentrates, and wettable-powder formulations. The historical development of the ___________ is based on the pyrethrins, which are derived from chrysanthemums.
 A. Insect growth regulator D. Hormonal IGRs
 B. Chitin E. Benzamide
 C. Benzoyl-phenylurea termiticide F. None of the Above

4. __________ have been synthesized to be similar to pyrethrins yet more stable in the environment. Evidence suggests that they have a very large margin of safety when used as directed by the label (Aldridge, 1990; Chen et al., 1991; Snodgrass, 1992).
 A. Benzamide(s) D. Restricted pesticide(s)
 B. Pyrethroid(s) E. Organophosphate(s)
 C. Pyrethin(s) F. None of the Above

Adsorption Process
5. ____________ often occurs because of the attraction between a chemical and soil particles.
 A. Restricted pesticide(s) D. Pesticide chemical application(s)
 B. Action threshold(s) E. Compatibility agent(s)
 C. Adsorption F. None of the Above

Pesticide Transfer
6. Five ways that pesticides can be transferred are through ___________, runoff, leaching, absorption and crop removal.
 A. Volatilization D. Environmental factors
 B. Movement E. Pesticide chemical application(s)
 C. Photodegradation F. None of the Above
Volatilization
7. Volatilization occurs when a pesticide partitions from the solid or aqueous phase to the ___________________. Once volatilized, a pesticide may diffuse into the atmosphere and either be destroyed or continue as an environmental risk. When mixing disturbs a soil contaminated by a pesticide or other organic compound, a 30 percent or greater loss of the soil contaminant through volatilization is not unusual.
A. Solid D. Environmental
B. Liquid E. Pesticide chemical application(s)
C. Photodegradation F. None of the Above

Thermophilic Temperatures
8. Moisture also affects volatilization rates. Water may physically impede the flow of a gas phase pesticide by obstructing the pores through which gases travel. ______________may also promote volatilization by liberating weakly adsorbed pesticides.
A. Water D. Environmental factors
B. Ultra-low volume application of pesticide(s) E. Photodegradation
C. Action threshold(s) F. None of the Above

Photodegradation
9. Factors that influence pesticide photodegradation include the intensity of the sunlight, properties of the application site, the application method and the properties of the pesticide. ______________from photodegradation can be reduced by adding the pesticide to the soil during or immediately after application.
A. Restricted pesticide(s) D. Pesticide chemical application(s)
B. Action threshold(s) E. Compatibility agent(s)
C. Pesticide losses F. None of the Above

Proper Pesticide Handling
10. Care must be exercised in cleaning equipment, clothing, and persons working with ______________. Additionally, special precautions are necessary if pesticides are spilled or catch fire. Certain materials associated with vector control operations, including some pesticides, are considered by EPA and DPR to represent hazardous wastes.
A. Restricted pesticide(s) D. Pesticide chemical application(s)
B. Pesticides E. Pesticides and compatibility agent(s)
C. Agriculture pesticides F. None of the Above
Aerial Application CEU Training Assignment #5 Supplemental

You will have 90 days from the start of this course to have successfully passed this assignment with a score of 70%. You may e-mail the answers to TLC, info@tlch2o.com or fax the answers to TLC, (928) 272-0747. This assignment is available to you in a Word Format on TLC’s Website. You can find online assistance for this course on the in the Search function on Adobe Acrobat PDF to help find the answers. Once you have paid the course fee, you will be provided complete course support from Student Services (928) 468-0665.

Write your answers on the Answer Key found in the front of this assignment.
If you are a repeat student, please take the alternative version # 5 assignment.

There are no intention trick questions. All questions require the specific answer as found in the text.

Topic 1 Aerial Application Introduction Supplement

1. ___________ application of pesticides has been defined as spraying at a Volume Application Rate (VAR) of less than 5 L/ha for field crops or less than 50 L/ha for tree/bush crops.
 A. Positive metering system(s)
 B. Vanes in the spreader(s)
 C. Ultra-low volume
 D. Venturi-type and rotary-slinger spreader(s)
 E. Absorbent material(s)
 F. None of the Above

2. Adequate pre-preparation will make sure that the actual __________ is carried out under the safest conditions and accurate spray timing will help ensure that the product is used to optimum effect. Employers and applicator, worker or handlers must make sure that all safety equipment, clothing and aircraft loading equipment are clean and in a good state of repair.
 A. Application
 B. Spraying
 C. Maneuverability
 D. Spray pressure
 E. Accurate spray timing
 F. None of the Above

3. Fixed-wing aircraft use venturi spreaders while helicopters use rotary spreaders. Venturi spreaders clamp to the gate box at the _________________.
 A. Secure section
 B. Spraying system
 C. Agitator(s)
 D. Base of the hopper
 E. Spray pressure
 F. None of the Above

4. ___________ and positive metering systems are available.
 A. Positive metering system(s)
 B. Vanes in the spreader(s)
 C. Agitator(s)
 D. Venturi-type and rotary-slinger spreader(s)
 E. Absorbent material(s)
 F. None of the Above

5. Rotor spreaders are self-contained units that hang below the helicopter. A recent approach for helicopters is to use saddle tanks with a(n) _________________.
 A. Secure section
 B. Spraying system
 C. Agitator(s)
 D. Venturi spreader(s)
 E. Auger and forced-air boom
 F. None of the Above

65
Aerial Application Assignment 1/1/2019
6. ______________ can be a problem with aerial spraying and environmental contamination can be significant if spraying is incorrectly executed.
A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
B. Accurate deposition E. Most appropriate spraying equipment
C. Volatility and spray drift F. None of the Above

7. ___________ are valuable for metering pelleted herbicides or hard slick grass seed in fixed-wing aircraft. Chaffy grass seed can be especially difficult to meter and applicator, worker or handler “know-how” is valuable.
A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
B. Accurate deposition E. Most appropriate spraying equipment
C. Positive metering systems F. None of the Above

8. The cab must be declared in writing by the manufacturer or by a governmental agency to provide at least as much respiratory protection as the __________ listed on the pesticide labeling.
A. Positive metering system(s) D. Venturi-type and rotary-slinger spreader(s)
B. Vanes in the spreader(s) E. Ventilation system
C. Type of respirator F. None of the Above

9. ___________ is relatively easy to achieve with most ground-based directed spraying, but spray application with fixed and rotary wing aircraft presents more complex problems.
A. Application D. Spray pressure
B. Acceptable spray distribution E. Accurate spray timing
C. Extreme maneuverability F. None of the Above

10. To help keep sprayer-applicator, worker or handler exposure to a minimum, wherever possible preference must be given to using pesticide packs handled via ____________.
A. Secure section D. Venturi spreader(s)
B. Spraying system E. Closed transfer systems
C. Agitator(s) F. None of the Above
Topic 2 Understanding Hydraulics and Sprayer Principles

1. Hydrodynamics, the study of liquids in motion, is concerned with such matters as friction and turbulence generated in pipes by flowing liquids, the flow of water over weirs and through_________, and the use of hydraulic pressure in machinery.
 A. Nozzle(s) D. Relative pressures of the liquid(s)
 B. Hydraulic line(s) E. Height of liquid column(s)
 C. Isobar(s) F. None of the Above

2. __________are almost incompressible.
 A. Liquid(s) D. Pressure(s)
 B. Hydraulic pressure(s) E. Volume(s)
 C. Velocity(s) F. None of the Above

3. The atmospheric pressure is of great importance in meteorology, since it determines the winds, which generally move at right angles to the direction of the most rapid change of pressure, that is, along the isobars, which are contours of_____________. Certain typical weather patterns are associated with relatively high and relatively low pressures, and how they vary with time. The barometric pressure may be given in popular weather forecasts, though few people know what to do with it.
 A. Spray nozzle(s) D. Relative pressures of the liquid(s)
 B. Hydraulic line(s) E. Height of liquid column(s)
 C. Constant pressure F. None of the Above

4. Velocity of flow is an important consideration in sizing the______________.
 A. Spray nozzle(s) D. Relative pressures of the liquid(s)
 B. Hydraulic line(s) E. Height of liquid column(s)
 C. Isobar(s) F. None of the Above

5. Bernoulli's principle thus says that a rise (fall) in pressure in a __________must always be accompanied by a decrease (increase) in the speed, and conversely, if an increase (decrease) in the speed of the fluid results in a decrease (increase) in the pressure.
 A. Liquids D. Flowing fluid
 B. Hydraulic pressure E. Volume of flow
 C. Velocity of flow F. None of the Above

6. Most sprayers distribute pesticides using a boom with spray nozzles spaced at _______________. The most common example would be wide horizontal booms used on field sprayers to spray field crops.
 A. Spray nozzle(s) D. Relative pressures of the liquid(s)
 B. Hydraulic line(s) E. Height of liquid column(s)
 C. Isobar(s) F. None of the Above

7. The full advantages of __________are more likely to be realized when its use is preplanned. Development of a planned aerial application program will require good cooperation between pilot and grower.
 A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
 B. Accurate deposition E. Most appropriate spraying equipment
 C. Aerial application F. None of the Above
8. Ultra-Low Volume (ULV) equipment ranges in capacity from a few ounces to 1/2 gallon per acre. _____________and atomizing attachments such as Micronair, Mini-spin and Airfoil are frequently used to aid in droplet break-up.

A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
B. Accurate deposition E. Most appropriate spraying equipment
C. Special metering F. None of the Above

9. The nozzle type and pressure should be selected for the _____________ and the atomization required for the job. Machines should be calibrated often to compensate for wear. The application rate (gallons per acre) will be set by the chemical being applied and the crop being treated as listed on the manufacturer's label.

A. Ground temperature D. Material being used
B. Application rate(s) E. Liquid dispersal system(s)
C. Maximum output F. None of the Above

10. When using___________, special consideration **must** be given to monitoring the air and ground temperature difference. This is one of the critical indicators of the time to quit treating for the day. The best weather for spraying treatment is usually from dawn until mid-morning.

A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
B. Accurate deposition E. Liquid ultra-low volume (ULV) formulations
C. Pesticide labeling F. None of the Above
Topic 3 Understanding Pumps and Aerial Sprayers

1. Droplet micron size is determined by the specific nozzle used first and foremost. In general, the larger the orifice tube, the larger the micron size of the droplet produced. The second factor in determining droplet size is the _________________.
 A. Droplet produced D. Higher amounts of sprays
 B. Spray system E. Surface tension of a liquid
 C. Aircraft speed F. None of the Above

2. Less distance between the droplet release point and the ____________ will reduce spray drift. Less distance means less time to travel from nozzle to target and therefore less drift occurs.
 A. Pesticide D. Target
 B. Droplet release point E. Sprayer calibration
 C. Higher amounts of sprays F. None of the Above

3. The drain valve(s) must be located at the lowest point(s) in the system to allow for complete draining of the spray system at the ___________. The aircraft may also be used for other purposes during the course of the program which require draining the spray system before such use. Check all low points for drain valves or removable plugs that will allow draining the spray system.
 A. Droplet produced D. Higher amounts of sprays
 B. Spray system E. Surface tension of a liquid
 C. End of the program F. None of the Above

4. The emergency shutoff valve should be located between the hopper and pump. The valve should be as close to the hopper as possible to prevent the loss of pesticide and damage to the environment in the _________________.
 A. Pesticide D. Event of a major spray system leak
 B. Droplet release point E. Sprayer calibration
 C. Higher amounts of sprays F. None of the Above

5. Electrostatic sprayers which apply ___________ to the material being sprayed reduce spraying time and improve insect and disease control per unit of chemical applied.
 A. Droplet produced D. Higher amounts of sprays
 B. Spray system E. An electrical charge
 C. Tap water or base oil F. None of the Above

6. Higher amounts of sprays from air-assisted electrostatic units were also found deeper in the crop canopy compared to the amounts delivered by uncharged hydraulic sprayers. These sprayers also deposit more _____________ on any fruit present in the canopy, however.
 A. Pesticide D. Tension
 B. Droplet release point E. Spray
 C. Higher amounts of sprays F. None of the Above
7. Specific gravity is the ratio of the mass of a given volume of liquid to the mass of the same volume of water. In spraying, the main effect of the specific gravity S_g of a liquid other than water is on the capacity of the spray nozzle. All vendor-supplied performance data for nozzles are__________________.
 A. Droplet produced D. Higher amounts of sprays
 B. Spray system E. Surface tension of a liquid
 C. Based on spraying water F. None of the Above

8. The surface tension of a liquid tends to assume the______________, acting as a membrane under tension.
 A. Pesticide D. Pressure
 B. Droplet release point E. Smallest possible size
 C. Higher amounts of sprays F. None of the Above

9. Surface tension is more apparent at low operating pressures. A higher surface tension reduces the spray angle, particularly on hollow cone nozzles. Low surface tensions can allow nozzles to be operated at__________________.
 A. Droplet produced D. Higher amounts of sprays
 B. Spray system E. Lower pressures
 C. Tap water or base oil F. None of the Above

10. You should conduct sprayer calibration using tap water or base oil. Calibration depends on the___________________. After you have properly calibrated your equipment, it is ready to use. The next step is to read the label and find the site and pest which you are treating.
 A. Pesticide D. Tension
 B. Droplet release point E. Formulation applied and equipment used
 C. Higher amounts of sprays F. None of the Above
Topic 4 Aerial Application Assignment and Control Information

Section

1. Airports or airstrips must be of ________ to handle the aircraft that may be used for the program. Hard-surfaced runways are desirable when large multi-engine aircraft are used. The contractor/pilot must complete all arrangements necessary to use any airport.
 A. Application D. Adequate size
 B. Shorter E. Average sod conditions
 C. Maneuverability F. None of the Above

2. The airstrip lengths shown below are for runways with clear approaches and __________ at an elevation of approximately 4,000 feet above sea level. At higher elevations or when fields are soft, longer airstrips will be required. Hard-surfaced runways at lower elevations may be somewhat shorter.
 A. Application D. Adequate size
 B. Shorter E. Average sod conditions
 C. Maneuverability F. None of the Above

3. Many of the pesticides used in aerial treatments are highly toxic to bees. Notify beekeepers about the meetings. Program operational guidelines, environmental impact statements, __________, State laws, and/or pesticide labels may also require that beekeepers in the area be notified of control programs.
 A. Environmental application D. Environmental issues
 B. Environmental protection E. Accurate spraying
 C. Environmental assessments (EA) F. None of the Above

4. After taking a __________ flight with each pilot and confirming that everything (buffer zones, spray blocks, and sensitive areas) is recorded on a master program map, then jointly sign and date the map. When observation aircraft are not available, then using ground vehicles to show pilots and/or flaggers their assigned blocks may be necessary.
 A. Application D. Spraying reconnaissance
 B. Pretreatment reconnaissance E. Test reconnaissance
 C. Maneuverability F. None of the Above

5. Use dyecards to monitor ________________.
 A. Nozzle or nozzle group output D. Liquid formulation spray deposition
 B. Pesticide absorption E. Row spacing
 C. Uniform distribution F. None of the Above

6. Dyecards are made of water- or oil-sensitive paper and are used to provide valuable information on swath width, spray droplet deposition pattern, and droplet size; and to identify leaks in the __________.
 A. Application D. Liquid formulation spray deposition
 B. Spray system E. Nozzle or nozzle group output
 C. Boom F. None of the Above
7. Use chart for distance to drive in the field. Use nozzle spacing for _________. For directed and band rigs use the row spacing.
 A. Application D. Liquid formulation spray deposition
 B. Spray system E. Nozzle or nozzle group output
 C. Booms F. None of the Above

8. Set throttle for __________ and operate all equipment. Note seconds required to drive measured distance.
 A. Application D. Spray pressure
 B. Spraying E. Accurate spray timing
 C. Extreme maneuverability F. None of the Above

9. Catch spray for the noted time in Step 2 in container marked in ounces. If boom, catch spray from one nozzle during noted time. On directed rigs, catch spray from all nozzles per row for noted time. ______________ output in ounces = gallons/acre actually applied.
 A. Nozzle or nozzle group D. Liquid formulation spray deposition
 B. Pesticide E. Spray pressure
 C. Uniform distribution F. None of the Above

10. Repeat for each nozzle to assure ______________. Replace any nozzles whose output is greater than 10 % of the average of all nozzles.
 A. Nozzle or nozzle group D. Liquid formulation spray deposition
 B. Pesticide distribution E. Spray pressure
 C. Uniform distribution F. None of the Above
Topic 5 Pesticide Drift Control and Training Requirements

The EPA defines spray or dust drift as:
1. "the physical movement of ____________through the air at the time of pesticide application or soon thereafter from the target site to any non- or off-target site. Spray drift shall not include movement of pesticides to non- or off-target sites caused by erosion, migration, volatility, or windblown soil particles that occurs after application or application of fumigants unless specifically addressed on the product label with respect to drift control requirements."
A. Granular material(s) D. Organochlorine pesticide(s)
B. Pesticide droplets or particles E. Spray pressure, output and aircraft height
C. Chemical control F. None of the Above

2. Pesticide residues are generally meant to include pesticides that are detectible in or on places other than ____________. Fresh water reservoirs, stream bed sediments, and harvested food would be examples of places that would be tested for pesticide residues.
A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
B. Accurate deposition E. Most appropriate spraying equipment
C. Their intended target F. None of the Above

3. Droplet size depends primarily upon the spray pressure, nozzle design and orientation, and the ____________. The size of granular materials depends upon the particular formulation and can be controlled to some extent by screening. In the case of sprays, droplet size is generally increased by reducing pressures or increasing nozzle size.
A. Granular material(s) D. Surface tension of the spray solution
B. Pesticide droplets or particles E. Spray pressure, output and aircraft height
C. Chemical control F. None of the Above

4. Hot temperatures, moist soils, and temperature inversions all increase the potential for vapor drift. ____________ is not movement of material caused by wind. In fact, calm or no wind may lead to inversions that could result in vapor drift. Vapor drift can be avoided by simply refrainning from the use of ester-containing formulations of 2,4-D.
A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
B. Accurate deposition E. Most appropriate spraying equipment
C. Vapor drift F. None of the Above

5. Regular field scouting, coupled with forecasting pest problems and determining economic thresholds, is used to ensure that ____________ are only applied when pest populations warrant chemical control.
A. Granular material(s) D. Pesticides
B. Pesticide droplets or particles E. Spray pressure, output and aircraft height
C. Chemical control F. None of the Above

6. ____________ involving arsenic powders has been implicated in Bowen's disease. However, lead arsenic has not been used by aerial applicators or in any other form of agriculture for three decades because of the adverse effects to human health that were not as well known when the powder was legal.
A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
B. Accurate deposition E. Most appropriate spraying equipment
C. Crop dusting F. None of the Above
7. A number of the ____________ have been banned from most uses worldwide, and
globally they are controlled via the Stockholm Convention on persistent organic pollutants.
These include: aldrin, chlordane, DDT, dieldrin, endrin, heptachlor, mirex and toxaphene.
A. Granular material(s) D. Organochlorine pesticide(s)
B. Volatile herbicide(s) E. The phenoxy group of herbicides
C. Chemical control(s) F. None of the Above

8. The distance a spray droplet travels depends on the droplet size and downward
velocity, the release height and the ambient conditions. Vortices created by the aircraft
passage will also influence__________________.
A. Pesticide(s) D. Ultra-low volume application of pesticide(s)
B. Accurate deposition E. Most appropriate spraying equipment
C. Spray distribution efficiency F. None of the Above

9. During a flight, ____________, output and aircraft height above the crop can be
adjusted if necessary however, as the pilot has to concentrate on flying the aircraft he may
only occasionally check the spraying system.
A. Granular material(s) D. Ultra-low volume application of pesticide(s)
B. Pesticide droplets or particles E. Spray pressure
C. Chemical control F. None of the Above

10. Refer to the relevant applicator, ____________instruction manuals for both the
spray equipment and the aircraft. Aircraft mounted spray equipment is often removed after
spraying to release the aircraft for other duties. Both the spray equipment and the aircraft
must be thoroughly cleaned (“decontaminated”) and dried, before being stored.
A. Handler(s) D. Early-entry workers
B. Agricultural employer(s) E. Worker or handler’s
C. Employee(s) F. None of the Above
Topic 6 Complications/ Limitations / Risk

1. Specific restrictions may include prohibiting the use of certain pesticides under certain conditions, prohibiting certain methods of application, requiring use of a foliage barrier, or requiring a buffer zone distance between the site of ______________ to be protected.
 A. Nozzle or nozzle group output D. Application site
 B. Application and areas E. Row spacing
 C. Uniform distribution F. None of the Above

2. During the past few years, the OPP has received and reviewed new studies on spray drift that it required from pesticide registrants to support their product registrations. The OPP has completed its review of these studies and reached conclusions about the factors that influence drift and the amounts of sprays which can drift from the ______________.
 A. Nozzle or nozzle group output D. Application site
 B. Application and areas E. Row spacing
 C. Uniform distribution F. None of the Above

3. The distance of droplet drift depends upon the size of the droplets, the velocity of the wind and the height above the ground where the herbicide is discharged. In general, larger orifices and ______________.
 A. The size of the droplet(s) D. Higher pressures result in larger droplets
 B. The wider the drift E. Lower pressures result in larger droplets
 C. The lesser the drift F. None of the Above

4. Volatility refers to the ability of a herbicide to vaporize and to mix freely with the air. Volatile herbicides may produce ______________ that can be carried great distances from the target area to other crop sites.
 A. The size of the droplet(s) D. Vapors
 B. Drift E. Mists
 C. Spray F. None of the Above

5. The phenoxy group of herbicides has been most often involved in crop injury by off-target drift. ______________ includes 2,4-D, 2,4,5-T, 2,4-DB, 2,4,5-TP (Silvex) and MCPA. These herbicides are most commonly used for the control of broad-leaved weeds in crops and for the control of undesirable woody species.
 A. Phenoxy herbicides D. The phenoxy group
 B. Esters E. Esters or amines
 C. Volatile herbicide(s) F. None of the Above

6. ______________ in general are formulated in two ways, as esters or amines.
 A. Phenoxy herbicides D. The phenoxy group of herbicides
 B. Esters E. Esters or amines
 C. Volatile herbicide(s) F. None of the Above

7. ______________ are more effective in controlling hard-to-kill weeds but are the most hazardous in terms of volatility and consequent drift to sensitive crops.
 A. Phenoxy herbicides D. The phenoxy group of herbicides
 B. Esters E. Esters or amines
 C. Volatile herbicide(s) F. None of the Above
8. Flow control devices are necessary to make the tank, pump and nozzles work together. Depending on the application system, these devices may include pressure regulators, unloader valves and control valves. Because both the _______ and flow rate are determined by operating pressure, each sprayer should be equipped with a pressure gauge.
A. Nozzle or nozzle group output D. Liquid formulation spray deposition
B. Spray pattern E. Row spacing
C. Uniform distribution F. None of the Above

9. The gauge should be placed where it may be easily seen. Strainers are also required for effective treatments. Strainers trap particles and debris in the spray mixture and protect the pump, ____________ and nozzles from damage.
A. Nozzle or nozzle group output D. Liquid formulation spray deposition
B. Pesticide sprayer E. Control devices
C. Uniform distribution F. None of the Above

10. All nozzles produce a range of ________________. The small, drift-prone particles cannot be eliminated but can be reduced and kept within reasonable limits.
A. Nozzle or nozzle group output D. Liquid formulation spray deposition
B. Pesticide drift E. Droplet sizes
C. Uniform distribution F. None of the Above
Topic 7 Aerial and Agricultural Pesticides

1. Due to its relatively low toxicity towards humans and mammals, ___________ is listed as moderately toxic compound in U.S. Environmental Protection Agency and World Health Organization toxicity class
 A. Insect growth regulator D. Hormonal IGRs
 B. Fenthion E. Benzamide
 C. Benzoyl-phenylurea termiticide F. None of the Above

2. Moisture also affects volatilization rates. Water may physically impede the flow of a gas phase pesticide by obstructing the pores through which gases travel. _____________ may also promote volatilization by liberating weakly adsorbed pesticides.
 A. Water D. Environmental factors
 B. Ultra-low volume application of pesticide(s) E. Photodegradation
 C. Action threshold(s) F. None of the Above

3. Factors that influence pesticide photodegradation include the intensity of the sunlight, properties of the application site, the application method and the properties of the pesticide. _____________ from photodegradation can be reduced by adding the pesticide to the soil during or immediately after application.
 A. Restricted pesticide(s) D. Pesticide chemical application(s)
 B. Action threshold(s) E. Compatibility agent(s)
 C. Pesticide losses F. None of the Above

4. Care must be exercised in cleaning equipment, clothing, and persons working with ________________. Additionally, special precautions are necessary if pesticides are spilled or catch fire. Certain materials associated with vector control operations, including some pesticides, are considered by EPA and DPR to represent hazardous wastes.
 A. Restricted pesticide(s) D. Pesticide chemical application(s)
 B. Pesticides E. Pesticides and compatibility agent(s)
 C. Agriculture pesticides F. None of the Above

5. Permethrin is a broad-spectrum pyrethroid insecticide. It is available in dusts, emulsifiable concentrates, smokes, ULV concentrates, and wettable-powder formulations. The historical development of the ___________ is based on the pyrethrins, which are derived from chrysanthemums.
 A. Insect growth regulator D. Hormonal IGRs
 B. Chitin E. Benzamide
 C. Benzoyl-phenylurea termiticide F. None of the Above

6. ___________ have been synthesized to be similar to pyrethrins yet more stable in the environment. Evidence suggests that they have a very large margin of safety when used as directed by the label (Aldridge, 1990; Chen et al., 1991; Snodgrass, 1992).
 A. Benzamide(s) D. Restricted pesticide(s)
 B. Pyrethroid(s) E. Organophosphate(s)
 C. Pyrethrin(s) F. None of the Above
7. ______________often occurs because of the attraction between a chemical and soil particles.
A. Restricted pesticide(s) D. Pesticide chemical application(s)
B. Action threshold(s) E. Compatibility agent(s)
C. Adsorption F. None of the Above

8. Five ways that pesticides can be transferred are through__________, runoff, leaching, absorption and crop removal.
A. Volatilization D. Environmental factors
B. Movement E. Pesticide chemical application(s)
C. Photodegradation F. None of the Above

9. Malathion is a(n) ________parasympathomimetic which binds irreversibly to cholinesterase. Malathion is an insecticide of relatively low human toxicity; however recent studies have shown that children with higher levels of Malathion in their urine seem to be at an increased risk of attention deficit hyperactivity disorder.
A. Insect growth regulator D. Hormonal IGRs
B. Organophosphate E. Benzamide
C. Benzoyl-phenylurea F. None of the Above

10. Volatilization occurs when a pesticide partitions from the solid or aqueous phase to the _______________. Once volatilized, a pesticide may diffuse into the atmosphere and either be destroyed or continue as an environmental risk. When mixing disturbs a soil contaminated by a pesticide or other organic compound, a 30 percent or greater loss of the soil contaminant through volatilization is not unusual.
A. Solid D. Environmental
B. Liquid E. Pesticide chemical application(s)
C. Photodegradation F. None of the Above