WATER TREATMENT PRIMER 1 \$100.00 48 HOUR RUSH ORDER PROCESSING FEE ADDITIONAL \$50.00

Start and Finish Dates:		
You will have 90 days from this date in or	der to complete this cours	е
List number of hours worked on assignme	ent must match State Req	uirement.
Name	Signature	
I have read and understood the disclaimer notice on page	ige 2. Digitally sign XXX	
Address		
Addiess		
City	State	Zip
Email	Fax ()	
Phone:		
Home ()	Work ()	
Operator ID #		Exp. Date
Please circle/check which certification		
Water Treatment Water Distribution	Other	
Technical Learning College		
Toll Free (866) 557-1746	Fax (928) 272-0747 <u>inf</u>	o@tich2o.com
If you've paid on the Internet, please w	rite your Customer#	
Please invoice me, my PO#		
Please pay with your credit card on our and provide your credit card information		ore or Buy Now. Or call us

We will stop mailing the certificate of completion so we need either your fax number or email address. We will e-mail the certificate to you, if no e-mail address; we will fax it to you.

DISCLAIMER NOTICE

I understand that it is my responsibility to ensure that this CEU course is either approved or accepted in my State for CEU credit. I understand State laws and rules change on a frequent basis and I believe this course is currently accepted in my State for CEU or contact hour credit, if it is not, I will not hold Technical Learning College responsible. I also understand that this type of study program deals with dangerous conditions and that I will not hold Technical Learning College, Technical Learning Consultants, Inc. (TLC) liable for any errors or omissions or advice contained in this CEU education training course or for any violation or injury or neglect or damage caused by this CEU education training or course material suggestion or error. I will call or contact TLC if I need help or assistance and double-check to ensure my registration page and assignment has been received and graded.

State Approval Listing Link, check to see if your State accepts or has pre-approved this course. Not all States are listed. Not all courses are listed. If the course is not accepted for CEU credit, we will give you the course free if you ask your State to accept it for credit.

Professional Engineers; Most states will accept our courses for credit but we do not officially list the States or Agencies. Please check your State for approval.

State Approval Listing URL...

http://www.abctlc.com/downloads/PDF/CEU%20State%20Approvals.pdf

You can obtain a printed version of the course manual from TLC for an additional \$169.95 plus shipping charges.

AFFIDAVIT OF EXAM COMPLETION

I affirm that I personally completed the entire text of the course. I also affirm that I completed the exam without assistance from any outside source. I understand that it is my responsibility to file or maintain my certificate of completion as required by the state or by the designation organization.

Grading Information

In order to maintain the integrity of our courses we do not distribute test scores, percentages or questions missed. Our exams are based upon pass/fail criteria with the benchmark for successful completion set at 70%. Once you pass the exam, your record will reflect a successful completion and a certificate will be issued to you.

Rush Grading Service

If you need this assignment graded and the results mailed to you within a 48-hour period, prepare to pay an additional rush service handling fee of \$50.00. This fee may not cover postage costs. If you need this service, simply write RUSH on the top of your Registration Form. We will place you in the front of the grading and processing line.

For security purposes, please fax or e-mail a copy of your driver's license and always call us to <u>confirm</u> we've received your assignment and to confirm your identity.

CERTIFICATION OF COURSE PROCTOR

Technical Learning College requires that our students who takes a correspondence or home study program course must pass a proctored course reading, quiz and final examination. The proctor must complete and provide to the school a certification form approved by the commission for each examination administered by the proctor.

Instructions . When a student completes the course work, fill out the blanks in this section and provide the form to the proctor with the examination.
Name of Course:
Name of Licensee:
Instructions to Proctor . After an examination is administered, complete and return this certification and examination to the school in a sealed exam packet or in pdf format.
I certify that:
 I am a disinterested third party in the administration of this examination. I am not related by blood marriage or any other relationship to the licensee which would influence me from properly administering the examination. The licensee showed me positive photo identification prior to completing the examination. The enclosed examination was administered under my supervision on The licensee received no assistance and had no access to books, notes or reference material. I have not permitted the examination to be compromised, copied, or recorded in any way or by any method. Provide an estimate of the amount of time the student took to complete the assignment.
Time to complete the entire course and final exam
Notation of any problem or concerns:
Name and Telephone of Proctor (please print):
Signature of Proctor

WI FIIIIEI I AIISW	rei Key Naille		
	Phone		
You are responsible		<u>-</u>	ed for credit?
Website Telephone	e Call Email Sp	ooke to	
Did you receive the a	pproval number, if app	licable?	
What is the course ap	oproval number, if appl	icable?	
You can electronicall	y complete this assign	ment in Adobe Acrobat D	C.
Please Circle, Bold, Ur	nderline or X, one answe	r per question. A felt tipped	pen works best.
1. ABCD	20. A B	39. A B	58. ABCD
2. ABCD	21. A B	40. A B C D	59. ABCD
3. A B C D	22. A B	41. A B C D	60. ABCD
4. ABCD	23. ABCD	42. A B C D	61. ABCD
5. ABCD	24. ABCD	43. A B C D	62. ABCD
6. ABCD	25. ABCD	44. A B C D	63. AB
7. ABCD	26. ABCD	45. A B C D	64. A B
8. ABCD	27. ABCD	46. A B C D	65. AB
9. ABCD	28. ABCD	47. A B C D	66. AB
10. ABCD	29. ABCD	48. A B C D	67. AB
11. A B	30. ABCD	49. A B C D	68. AB
12. ABCD	31. AB	50. A B C D	69. ABCD
13. ABCD	32. ABCD	51. A B C D	70. ABCD
14. ABCD	33. AB	52. A B	71. ABCD
15. ABCD	34. A B	53. A B C D	72. ABCD
16. ABCD	35. ABCD	54. A B C D	73. ABCD
17. ABCD	36. ABCD	55. A B C D	74. ABCD
18. ABCD	37. AB	56. A B	75. ABCD
19. A B Water Treatment P	38. ABCD Primer 1 Assignment	57. A B C D TLC © 1/15/2	76. ABCD

77. ABCD	96. ABCD	115. ABCD	134. A B C D
78. A B C D	97. ABCD	116. ABCD	135. A B C D
79. ABCD	98. ABCD	117. AB	136. A B C D
80. A B C D	99. A B	118. ABCD	137. A B
81. A B C D	100. A B	119. ABCD	138. A B C D
82. A B C D	101. A B	120. ABCD	139. A B C D
83. A B C D	102. A B	121. ABCD	140. A B
84. A B C D	103. A B	122. ABCD	141. A B C D
85. A B C D	104. A B	123. ABCD	142. A B C D
86. A B	105. A B	124. ABCD	143. A B
87. A B C D	106. A B	125. ABCD	144. A B C D
88. A B C D	107. A B	126. ABCD	145. A B
89. ABCD	108. A B	127. AB	146. A B
90. ABCD	109. A B	128. AB	147. A B
91. A B C D	110. A B	129. AB	148. A B C D
92. A B	111. AB	130. AB	149. A B
93. A B C D	112. AB	131. ABCD	150. A B
94. ABCD	113. AB	132. A B C D	
95. A B C D	114. AB	133. A B C D	

I understand that I am 100 percent responsible to ensure that TLC receives the Assignment and Registration Key. I understand that TLC has a zero tolerance towards not following their rules, cheating or hostility towards staff or instructors. I need to complete the entire assignment for credit. There is no credit for partial assignment completion. My exam was proctored. I will contact TLC if I do not hear back from them within 2 days of assignment submission. I will forfeit my purchase costs and will not receive credit or a refund if I do not abide with TLC's rules.

Please Sign that you understand and will abide with TLC's Rules.

Signature	 		

Please e-mail or fax this survey along with your final exam

WATER TREATMENT PRIMER 1 CEU COURSE CUSTOMER SERVICE RESPONSE CARD

NAME:						
E- MAIL				P	HON	E
PLEASE CON APPROPRIAT						THE NUMBER OF THE '.
Please rate the	e difficul	ty of your	course			
Very Easy	0 1	2	3	4	5	Very Difficult
Please rate the	e difficul	ty of the t	estina r	rocess	S.	
Very Easy	0 1	2	3	4	5	Very Difficult
Very Similar	0 1 ear abo	2 ut this Co	3 urse? _	4	5	actual field or work. Very Different
Any other cond	cerns or	commen	ts.			

Please write down any question you may had problems with here.

When Finished with Your Assignment...

REQUIRED DOCUMENTS

Please scan the **Registration Page**, **Answer Key**, **Proctoring report**, **Survey and Driver's License** and email these documents to info@TLCH2O.com.

IPhone Scanning Instructions

If you are unable to scan, take a photo of these documents with your **iPhone** and send these photos to TLC, info@TLCH2O.com.

FAX

If you are unable to scan and email, please fax these documents to TLC, if you fax, call to confirm that we received your paperwork. (928) 468-0675

Rush Grading Service

If you need this assignment graded and the results mailed to you within a 48-hour period, prepare to pay an additional rush service handling fee of \$50.00.

This course contains general EPA's SDWA federal rule requirements. Please be aware that each state implements water / sampling procedures/ safety / environmental / SDWA regulations that may be more stringent than EPA's regulations. Check with your state environmental/health agency for more information. These rules change frequently and are often difficult to interpret and follow. Be careful to be in compliance with your permit and State and do not follow this course for proper compliance.

Water Treatment Primer 1 CEU Training Course Assignment

The Water Treatment Primer 1 CEU course assignment is available in Word on the Internet for your convenience, please visit www.ABCTLC.com and download the assignment and e-mail it back to TLC.

You will have 90 days from receipt of this manual to complete it in order to receive your Professional Development Hours (PDHs) or Continuing Education Unit (CEU). A score of 70 % or better is necessary to pass this course. If you should need any assistance, please email all concerns and the completed ANSWER KEY to info@tlch2o.com.

Select one answer per question. Please utilize the answer key. (s) on the answer will indicate either plural and singular tenses.

Hyperlink to the Glossary and Appendix

http://www.abctlc.com/downloads/PDF/WTGlossary.pdf

Three Types of Public Water Systems

- 1. Approximately 85,000 systems.
- A. TNCWS C. NTNCWSs
- B. CWSs D. None of the above
- 2. Approximately 52,000 systems serving the majority of the U.S. population.
- A. TNCWS C. NTNCWSs
- B. CWSs D. None of the above
- 3. Provides water where people do not remain for long periods of time (for example: gas stations, campgrounds).
- A. TNCWS C. NTNCWSs
- B. CWSs D. None of the above
- 4. Provides water to the same population year-round for example: homes, apartment buildings.
- A. TNCWS C. NTNCWSs
- B. CWSs D. None of the above
- 5. Approximately 18,000 water systems.
- A. TNCWS C. NTNCWSs
- B. CWSs D. None of the above
- 6. Provides water to the same people at least six months a year, but not all year for example: schools, factories, churches, office buildings that have their own water system.
- A. TNCWS C. NTNCWSs
- B. CWSs D. None of the above

Water Quality Key Words

- 7. Which of the following is manufactured from aluminum hydroxide by dehydroxylating it in a way that produces a highly porous material?
- A. Activated alumina
- C. Aluminum salts

B. Fluoride

D. None of the above

have a very large surface are	ostances has been processed to make it extremely porous and thus to ea available for adsorption or chemical reactions? C. Dissolved organic carbon D. None of the above	Э
9. The "dissolved" fraction of A. Activated aluminaB. Activated carbon	f which compound is an operational classification? C. Organic carbon D. None of the above	
Water Quality Section Surface (Raw) Water Introd		
	enhancement and formation of policy measures (administrative an I most effective types of treatment methods and/or chemicals. C. Surface water D. None of the above	ıd
	contains varying amounts of dissolved minerals including calciunes, sulfates and bicarbonates, depending on its source.	n,
		it.
variety of	d infiltrates the ground during precipitation; this runoff acquires a wid _that intensely alters its usefulness. C. Dissolved or suspended impurities D. None of the above	le
Surface Water Properties 14. Water is accepted as the comes in contact.	e because will dissolve most substances tha	at
A. Universal solvent B. Water quality	C. Surface water D. None of the above	
15. Depending on the regio or defective septic tanks.A. Excess nutrientsB. Biological actions	n, some lakes and rivers receive from sewer facilitie C. Discharge D. None of the above	S
discharge from industry co experience seasonal turnove A. Volatile organic compour		
(S) Means the answer can b	e plural or singular in nature	

17. Adjustments in the dissolved oxygen, algae, temperature, suspended solids, turbidity, and carbon dioxide will change because of
A. Excess nutrients C. Discharge
B. Biological activities D. None of the above
Managing Water Quality at the Source 18. Contingent upon the region, source water may have several restrictions of use as part of a Water Shed Management Plan. In some areas, it may be restricted from recreational use, discharge or runoff from agriculture, or A. Excess nutrients
19. Algae growth is supplied by the energy of the sun. As algae absorbs this energy, it converts carbon dioxide to oxygen. Algae and rooted aquatic plants are essential in the food chain of fish and birds. Algae growth is the result of photosynthesis. A. True B. False
20. The absence of dissolved oxygen in water is known as aerobic conditions.A. True B. False
21. Most treatment plant upsets are such as taste and odor, color, and filter clogging is due to algae. The type of algae determines the problem it will cause, for instance slime, corrosion, color, and toxicity. A. True B. False
22. The ecological equilibrium in lakes and reservoirs plays a natural part in purifying and sustaining the life of the lake. Certain vegetation removes the excess nutrients that would promote the growth of algae. Too much algae will imbalance the lake and kill fish. A. True B. False
23. Algae can be controlled in the water supply by using chemicals such as A. pH and alkalinity C. Powdered activated carbon and chlorine B. Copper sulfate D. None of the above
24. Contingent upon federal regulations and the amount of copper found natural in water, operators have used, powdered activated carbon and chlorine to control algae blooms.
A. pH and alkalinity C. Potassium permanganate B. Metals, and non-metals D. None of the above
25. The of the water will govern how these chemicals will react. A. pH and alkalinity

metals such as carbo faucets or staining.	eristics of Water eristics are the elements found that are considered alkali, metals, and non- enates, fluoride, The consumer relates it to scaling of C. Powdered activated carbon and chlorine D. None of the above
characteristics such a might be present, suc A. Turbidity	
to which a solution is_ A. Alkalinity	ce logarithm of the hydrogen ion concentration, [H ⁺], a measure of the degree C. Hydrogen ion (H ⁺) D. None of the above
substance that can ac	
pH of 7.0 indicates indicatesA. Acid	a solution the greater the hydrogen ion concentration and the lower the pH; a neutrality, a pH of less than 7 indicates acidity, and a pH of more than 7 C. Alkalinity D. None of the above
Because the alkalinit and hydroxide conten	stantial in many uses and treatments of natural waters and wastewaters. y of many surface waters is primarily a function of carbonate, bicarbonate, it, it is taken as an indication of the concentration of these constituents. The may include contributions from borates, phosphates, silicates or other bases se
32. significant in determin A. Alkalinity B. Acid	with an overabundance of alkaline earth metal concentrations is ing the suitability of water for irrigation. C. Hydrogen ion (H ⁺) D. None of the above
33. Alkalinity measu treatment processes A. True B. Fal	rements are used in the interpretation and control of water and wastewater se
	r is its acid-neutralizing capacity. It is the sum of all the titratable bases. The vary significantly with the end-point pH used. se
(S) Means the answe	r can be plural or singular in nature

35. Alkalinity is a mea	sure of and can be interpreted in terms of specific
	ne chemical composition of the sample is known. C. An aggregate property of water
	D. None of the above
Turbidity Introduction	
Turbidity Introduction 36. One physical feature	e of water is turbidity, is a measurement of the cloudiness of water caused
	C. Temperature fluctuation
A. Suspended particlesB. Variations	C. Temperature fluctuation D. None of the above
•	dity may inhibit with proper water treatment and monitoring. If high quality rbidity, there will be a reduction in water treatment costs. Turbidity is uses health hazards.
	ral surface waters is composed of a large number of sizes of particles. The ce changing constantly, depending on precipitation and
	. Temperature . None of the above
turbidity levels to increa quickly in both the water	s transpire, runoff into streams, rivers, and reservoirs occurs, causing se. In most cases, the particle sizes are relatively large and settle relatively er treatment plant and the source of supply. However, in some instances, may be present in the supply, which may cause some difficulty in the
relationship between tu A. Coagulant dosage	urbidity levels require higher coagulant dosages. However, seldom is the bidity level andlinear. C. Temperature ds (TDS) D. None of the above
normal due to higher co	coagulant required is relatively small when turbidities are much higher than lision probabilities of the during high turbidities. Total Dissolved Solids (TDS) None of the above
collision between the co	
B. Colloids	. Total Dissolved Solids (TDS) . None of the above
	may be existing in a water supply due to pollution, and these colloids ve in the coagulation process. In this situation, higher coagulant dosages
A. Turbidity CB. Organic colloids D	. Total Dissolved Solids (TDS) . None of the above

Turbidity MCL
44. An MCL for turbidity established by the EPA becauseinterferes with disinfection. This characteristic of water changes the most rapidly after a heavy rainfall.
A. Conductivity C. Temperature
B. Turbidity D. None of the above
45. The temperature variation of a sample, a scratched or unclean sample tube in the nephelometer and selecting an incorrect wavelength of a light path may be conditions caused by an inaccurate measurement. A. Conductivity C. Temperature B. Turbidity D. None of the above
Dissolved Oxygen
46. The level of dissolved oxygen in natural waters is often a direct indication of quality, since aquatic plants produce oxygen, while microorganisms generally consume it as they feed on
A. Pollutants C. E. coli bacteria B. Organic matter D. None of the above
47. At low temperatures, theis increased, so that in winter, concentrations as high as 20 ppm may be found in natural waters; during summer, saturation levels can be as low as 4 or 5 ppm. A. Dissolved oxygen B. Thermal stratification C. Solubility of oxygen D. None of the above
48. is essential for the support of fish and other aquatic life and aids in the
natural decomposition of organic matter.
A. Dissolved oxygen C. Solubility of oxygen
B. Thermal stratification D. None of the above
49. Thermal stratification is possible as water becomes less dense when heated, meaning water weighs less per unit volume. Therefore, warmer water will be lighter and colder water will be heavier. Due to this, there will always be a level of "self-induced" in a water storage. A. Saturation level(s) C. Permanent hardness
B. Thermal stratification D. None of the above
Objections to Hard Water Scale Formation 50. Hard water forms scale, usually, which causes a variety of problems. Left to dry on the surface of glassware and plumbing fixtures, including showers doors, faucets, and sink tops; hard water leaves unsightly white scale known as water spots. A. Magnesium carbonate
Secondary Standard
51. TDS is most often measured in parts per million (ppm) or milligrams per liter of water (mg/L).
The normal TDS level ranges fromA. 50 ppm to 1,000 ppm C. 50 ppm to 100 ppm
B. 5 ppm to 10 ppm D. None of the above

52. The Environmental Protection Agency (EPA), which is responsible for drinking water regulations in the United States, has identified TDS as a secondary standard, meaning that it is a voluntary guideline. While the United States set legal standards for many harmful substances, TDS, along with other contaminants that cause aesthetic, cosmetic, and technical effects, has only a guideline. A. True B. False
Langelier Saturation Index 53. The Langelier Saturation index (LSI) is an evenness scale derived from the theoretical concept of saturation and provides an indicator of the degree of saturation of water with respect to calcium carbonate. It can be shown that the Langelier saturation index (LSI) approximates the base 10 logarithm of thesaturation level. A. Magnesium carbonate C. Calcite B. Calcium carbonate D. None of the above
54. The Langelier saturation level approaches the concept of saturation using pH as a main variable. The LSI can be interpreted as the pH change required to bring water to A. Saturation level(s) C. Equilibrium B. Stratification D. None of the above
More on the Stage 2 DBP Rule 55. Which of the following rules focuses on public health protection by limiting exposure to DBPs, specifically total trihalomethanes and five haloacetic acids, which can form in water through disinfectants used to control microbial pathogens? A. Stage 2 DBP rule C. Long Term 2 Enhanced Surface Water Treatment Rule B. Stage 1 DBPR D. None of the above
56. Safe Drinking Water Act (SDWA) has been highly effective in protecting public health and has evolved to respond to new and emerging threats to safe drinking water. A. True B. False
 57. Which of the following is one of the major public health advances in the 20th century? A. Disinfection of drinking water B. Water distribution C. Amendments to the SDWA D. None of the above
58. There are specific microbial pathogens, such as, which can cause illness, and are highly resistant to traditional disinfection practices. A. Cryptosporidium
 59. The Stage 1 Disinfectants and Disinfection Byproducts Rule and, promulgated in December 1998. A. Stage 1 DBPR
60. Which of the following rules will reduce potential cancer and reproductive and developmental health risks from disinfection byproducts? A. Stage 1 DBPR C. Long Term 2 Enhanced Surface Water Rule B. Stage 2 DBPR D. None of the above

What are Disinfection Byproducts (DBPs)? 61. Which of the following form when disinfectants used to treat drinking water react with naturally occurring materials in the water? A. Chloramines C. Disinfection byproducts (DBPs) B. Humic and fulvic acids D. None of the above
62. Total trihalomethanes and haloacetic acids are widely occurring formed during disinfection with chlorine and chloramine. A. Gases C. Classes of DBPs B. Substances D. None of the above
Are THMs and HAAs the only disinfection byproducts? 63. The presence of TTHM and HAA5 is representative of the occurrence of many other chlorination DBPs; thus, an increase of TTHM and HAA5 generally indicates an increase of DBPs from chlorination. A. True B. False
All disinfectants form DBPs in one of two reactions: 64. Chorine and chlorine-based compounds (halogens) react with organics in water causing the hydrogen atom to substitute other atoms, resulting in halogenated by-products. A. True B. False
65. Secondary by-products are also formed when multiple disinfectants are used.A. True B. False
66. The EPA Surface Water Treatment Rule (SWTR) requires systems using public water supplies from either surface water or groundwater under the direct influence of surface water to disinfect. A. True B. False
Public Health Concerns 67. Results from toxicology studies have shown several DBPs (e.g., bromodichloromethane, bromoform, chloroform, dichloroacetic acid, and bromate) to be inert to laboratory animals. A. True B. False
68. Other DBPs (e.g., chlorite, bromodichloromethane, and certain haloacetic acids) have also been shown to cause adverse mutations (extra chromosomes) in laboratory animals. A. True B. False
Disinfection Byproduct Research and Regulations Summary 69 is unquestionably the most important step in the treatment of water for drinking water supplies. A. DBP(s) C. Disinfection B. Turbidity (particle) D. None of the above
70. Theshould not be compromised because of concern over the potential long-term effects of disinfectants and DBPs. A. DBP(s)

	death resulting from exposure to pathogens in drinking water is very
much greater than the risks f A. Disinfectants and DBPs 3. Turbidity (particle)	C. Natural organic matter precursors
,	
Controlling Disinfection By 72. Treatment techniques a	re available that provide water suppliers the opportunity to maximize
ootable water safety and qua	lity while minimizing the risk of
A. DBP risks	C. Disinfectants and DBPsD. None of the above
5. Turbidity (particle)	D. None of the above
	pproach to reduceis to remove natural organic
matter precursors prior to dis	INTECTION. C DRP formation
A. DBP(s) 3. Turbidity (particle)	D. None of the above
Coagulation and Clarification	
	can also be optimized for natural organic matter removal with higher (such as alum or iron salts), and optimization of pH
A. THMs and HAAs	(such as alum or iron salts), and optimization of pH. C. Natural organic matter
3. Inorganic coagulants	
75. Most treatment plants or	otimize their coagulation process forremoval.
A. Inorganic coagulants	C. Turbidity (particle)
Most contaminants	D. None of the above
Absorption	
	used to absorb that react with disinfectants to form
pyproducts.	
A. Inorganic coagulants B. Most contaminants	
5. MOSt Contaminants	D. None of the above
Membrane Technology	
amayal af	ically to desalinate brackish waters, have also demonstrated excellent
emoval of A THMs and HAAs	C. Natural organic matter
B. Optimization of pH	D. None of the above
70 Manahuana nasasasa	ver budusulis unserves to force weeks through a considerance bla
ro. Membrane processes	use hydraulic pressure to force water through a semi-permeable
osmosis (RO), nanofiltration	t Variations of this technology include reverse (low pressure RO), and microfiltration (comparable to conventional
sand filtration).	
A. Inorganic coagulants	<u> </u>
B. Contaminants	D. None of the above
79. Other conventional m	ethods of reducing DBP formation include changing the point of
chlorination and using	for residual disinfection.
	C. Total residual disinfection
3. Chloramines	D. None of the above

80. EPA predicted that most water systems will be able to achieve compliance with new DBP regulations through the use of one or more of these relatively low cost methods (EPA, 1998). Water system managers may also consider switching from chlorine to alternative disinfectants to reduce formation of A. THMs and HAAs C. Natural organic matter B. Optimization of pH D. None of the above
Water Treatment Section - Preliminary Treatment Process Preliminary Treatment
81. Weeds, leaves, and trash, if not removed, these will cause problems to the treatment plant's pumps and equipment, the best way to protect the plant is? A. Screening C. Change source B. Super settling D. None of the above
82. According to the text, wire mesh screens need maintenance and require? A. Manual cleaning C. No cleaning B. PM cleaning D. None of the above
Pre-Sedimentation 83. Sand and grit will damage plant equipment and pipes, so it must be removed with either rectangular or round shaped basin are called? A. Filtration basin(s) C. Sedimentation basin(s) B. Coagulation basin(s) D. None of the above
84. Which of the following treatment terms is used after the flocculation process? A. Filtration basin(s) C. Sedimentation basin(s) B. Coagulation basin(s) D. None of the above
Flights and Chains 85. Flights and chains remove the scum from the of the basin. A. Scum box C. Armature B. Surface D. None of the above
Circular Clarifiers 86. The most common type of Circular Clarifier has a center pier or column. A. True B. False
87. Which of the following processes uses alum and cationic polymer to neutralize the charge of colloidal particles? A. Filtration C. Flocculation B. Reconditioning D. None of the above
88. Which of the following compounds combines with alkalinity in the raw water to form a white precipitate that neutralizes suspended particles' electrical charge? A. Activated sodium C. Alum B. PAC D. None of the above

requires extensive retention time to permit settling? A. Conventional technology C. Slow Sand Filtration B. Chemical pretreatment D. None of the above
90. Which of the following processes lasts about 5 to 10 minutes? A. Filter-to-Waste C. Fast rinse B. Reconditioning cycle D. None of the above
91. Which of the following terms is often used to enhance filter performance? A. Conventional technology C. Fast rinse B. Chemical pretreatment D. None of the above
92. Feeding chemicals such as alum, ferric chloride, or a cationic polymer neutralizes the particle charges, allowing the particles to cling to one another and be trapped by the filter media. A. True B. False
93. Which of the following terms may increase filtered water clarity, measured in NTU, by 90% compared with filtration alone? A. Chemical pretreatment C. Fast rinse B. Reconditioning cycle D. None of the above
94. Tube settler design involves the use of at an angle of 60 degrees and adjacent to each other. This helps in increasing the settling area effectively. A. Weirs C. Multiple tubular channels sloping B. Uptakes D. Filters
Conventional Water Treatment Process Introduction 95or slow-sand filtration A. Disinfection C. Pre-treatment B. Coagulation D. Coagulation or flocculation
for algae control and arresting biological growth A. Sodium hydroxide C. Pre-treatment D. Ferric Chloride
along with pre-chlorination for removal of dissolved iron when present with small amounts relative of manganese A. Disinfection C. Pre-treatment B. Coagulation D. Aeration
to remove particles from water either by passage through a sand bed that can be washed and reused or by passage through a purpose- designed filter that is washable. A. Disinfection C. Pre-treatment D. Filtration

Treatment Design and Plant Operation

99. SCADA (Supervisory Control and Data Acquisition) automation of water treatment is common in the US. Source water quality through the seasons, scale, and environmental impact can dictate capital costs and operating costs. End use of the treated water dictates the necessary quality monitoring technologies.

A. True

B. False

SWTR Rule

100. Turbidity is caused by particles suspended in water. These particles scatter or reflect light rays, making the water appear cloudy.

A. True

B. False

101. Turbidity is expressed in nephelometric turbidity units (ntu) and a reading in excess of 5 ntu is generally noticeable to water system customers.

A. True

B. False

102. Besides the appearance of turbidity being unpleasant to customers, turbidity in water is significant from a public health standpoint because suspended particles could shelter microorganisms from the disinfectant and allow them to still be viable when they reach the customer.

A. True

B. False

Zeta Potential Introduction

103. Zeta potential is a physical property exhibited by all solid-liquid and liquid-liquid colloidal systems. Surrounding the surface of all dispersed particles is a thick layer of ions that have the same charge of the particle's surface called the ATP layer.

A. True

B. False

104. The zeta potential is defined as the voltage at the edge of the slipping (shear) plane with respect to the bulk-dispersing medium, where ions, molecules and other agents are no longer associated with a particle's surface.

A. True

B. False

105. If two adjacent particles have sufficiently high zeta potentials of the same sign, they will agglomerate due to repulsive electrostatic forces between particles with unlike charges.

A. True

B. False

Solubility of Substances in Water

106. Water is an excellent solvent for many compounds. Some dissolve in it as molecules while others, called electrolytes, dissociate and dissolve not as neutral molecules but as charged species called ions.

A. True

B. False

107. Compounds which exist as solid ionic crystals dissolve in water as ions, and most of them are highly soluble in water. "Highly soluble" is a somewhat elastic description, but generally means soluble to at least the extent of forming 0.1 to 1.0 molar aqueous solutions.

A. True

B. False

108. Salts which are very soluble in water than this at room temperature are called highly soluble salts.

A. True

B. False

Purpose of Coagulation

109. Chemical Coagulation in the water/wastewater treatment is the process of bringing suspended matter in untreated water together for the purpose of settling and for the preparation of the water for filtration.

A. True B. False

Turbidity Particles

- 110. The ability of particles to remain suspended in water is a function of hydrogen ion activity.
- A. True B. False
- 111. Turbidity particles can range in size from molecular to 50 microns (a tremendous range).

A. True B. False

112. Particles that are greater than one micron in diameter are considered silt, and settle out due to their relatively large size and density in a matter of days with the need to coagulation.

A. True B. False

Olation

113. Olation involves the bridging of two or more of these large molecules to form even larger, positively charged ions. A typical molecule can contain eight aluminum ions, twenty hydroxide ions, and will have a +4 charge.

A. True B. False

Aluminum Sulfate (Alum)

114. Aluminum Sulfate is also known as alum, filter alum, and alumina sulfate. Alum is the most widely used coagulant. Alum is available in dry form as a powder or in lump form. It can also be purchased and fed as a liquid.

A. True B. False

- 115. Carbon dioxide and sulfate are generally byproducts of these reactions. During the reactions, alum acts as ______ to reduce the pH and alkalinity of the water supply. It is important that sufficient alkalinity be present in the water supply for the various reactions to occur.
- A. Inorganic coagulant(s) C. Byproducts of these reactions

B. An acid D. None of the above

- 116. When the pH level of the water is above 7.8 after the addition of the alum, the aluminum ions again become soluble, and the efficiency of coagulation is decreased. Under these conditions, aluminum ions again penetrate the filters, and ______can occur in the clear well and in the distribution system in some cases.
- A. Post filtration alum coagulation C. Byproducts of these reactions

B. Olation reaction(s)

D. None of the above

Ferric Chloride (Ferric)

117. Ferric chloride is becoming more extensively used as a coagulant due partially to the fact that the material can be purchased as a liquid.

A. True B. False

- 118. Typical dosages of the inorganic coagulants range from 50 pounds per million gallons of water treated under ideal conditions to as high as 800 to 1000 pounds per million gallons of water treated under conditions.
- A. Worst case C. Increased
- B. Decreased D. None of the above

Effects of pH	ulation	
119. Whenever possible, on the done, lower coagulation lowered water quality.	coagulation should be conducted in n efficiency results, generally resulting in a waste of che	When this is micals and a
A. The optimum pH zoneB. The coagulation process	C. Collision between the colloids D. None of the above	
120. Each of the inorganic s A. Improper C. Lit B. Optimum D. No		pH range.
cases, this involves the add	necessary to adjust the pH level in the coagulation pro- lition of lime, caustic soda, or soda ash to maintain a minir cids may be necessary to raise or lower the pH level to ar	num pH level.
A. Improper C. Lit B. Optimum D. No		
Effects of Salts 122. Generally, mono an on the A. Improper C. Lit B. Optimum D. No	nd divalent cations such as sodium, calcium, and mag he coagulation process. ttle or no effect one of the above	jnesium have
relationship between turbidi required is	pidity levels require higher coagulant dosages. However, ity level and coagulant dosage linear. Usually, the addition when turbidities are much higher than normal colloids during high turbidities. elatively small one of the above	nal coagulant
inducing is carried directly to the filter	C. Collision between the colloids	
difficult to remove in the dosages are generally requi A. Improper C. SI		olloids can be coagulant
	ures can cause two factors that add to the difficulty of th atures approach freezing, almost all chemical reactions	
A. Improper C. SI B. Higher D. No	· lowly one of the above	

127. It can be difficult to evenly disperse the coagulants into the water. In addition, floc settling characteristics become poor due to the higher density of the water during near freezing temperatures. As a result, the coagulant process becomes less efficient, and higher coagulant dosages are generally used to compensate for these effects.

B. False A. True

Mixing Effects

- 128. Poor or inadequate mixing results in an uneven dispersion of the coagulant. Unfortunately, many older plants were designed with mixing facilities which generally do not accomplish mixing in the most efficient manner. As a result, it becomes necessary to use higher than necessary dosages of coagulant to achieve an optimum level of efficiency in the process.
- A. True B. False
- 129. The effects of high turbidity and warm water temperatures can tend to aggravate the lack of adequate mixing facilities in some plants.

A. True B. False

Effect of the Coagulant

130. The choice of the proper coagulant for the given conditions is of critical importance in maintaining an efficient coagulation scheme under widely varying conditions. The chemicals most commonly used in the coagulation process are Aluminum Sulfate, Ferric Chloride, Ferric Sulfate, and Cationic Polymers.

B. False A. True

Control Introducti C

Corrosion Control Introdu	Ction		
	terioration of a substance b found in water when meta	•	
Drinking water contaminate	d with certain metals (such a	as) can harm human
health.	`		
A. Lead	C. Lead and cadmium		
B. Lead and copper	D. None of the above		
growth of microorganisms,	ces the useful life of water or resulting in disagreeable tand highly toxic, lead is the con	stes, odors, slime	s and further corrosion.
any public water system. In	the use of lead solders, flux the past, solder used in plum C. 50% copper and 50% le	nbing has been	e installation or repair of

B. Silver-tin and antimony-tin D. None of the above

A. 20% lead and 80% tin C. Lead and cadmium

B. 50% tin and 50% lead D. None of the above

Coagulation and Flocculation Summary

134. Using lead-free solders, such as

Rapid Sand Filtration

135. Which terms is the most prevalent form of water treatment technology in use today?

A. Conventional technology C. Rapid Sand filtration B. Sedimentation process D. None of the above

is a key factor in lead corrosion control.

136. Rapid Sand filtration process et achieve maximum effectiveness.	mp	loys a combination of	in order
A. Filtration B. Sedimentation process	C. D.	Physical and chemical processes None of the above	
Coagulation 137. At the Water Treatment Plant, microscopic impurities in the water to A. True B. False		ım is added to the water in the "flash mix" to cause ump together.	9
138. Fine particles must be coagula filtered, this is achieved through the A. Sedimentation chemicals B. Coagulant chemicals	use C.	Flocculation chemicals	an be
139. Which of the following terms atA. Aluminum Sulfate moleculesB. Coagulant chemicals	C.		
		ging together destabilized or coagulated particles /or filtered out of the water being treated.	to form
141. Flocculation is the process who and form heavier particles called "flota. EqualizationB. Agglomerate	c".	the suspended particles can collide, Destabilized or coagulated particles None of the above	,
allows largerloads.		ource water, some plants have pre-sedimentation, in a reservoir or lake reducing solid rem	
A. Equalization of the basinB. Particles time to settle	C. D.	Floc particles mix None of the above	
Sedimentation 143. Sedimentation is the process of A. True B. False	of de	estabilizing coagulated particles in water.	
Water Filtration Key Terms Declining Rate Filters 144. The filter flow rate will vary with A. Head loss C. Effl B. Uniform media D. No	luer	nt control of the above	
		equired for a small amount of water to pass	

145. Detention time is actual time required for a small amount of water to pass through a Sedimentation basin at a given rate of flow, or the calculated time required for a small amount of liquid to pass through a tank at a given rate of flow.

A. True B. False

Disinfection

146. Chlorine kills or "inactivates" harmful microorganisms in water.

A. True B. False

Jar Testing

147. Jar testing traditionally has been done on an infrequent basis in most water treatment plants to control THMs.

A. True B. False

рΗ

148. According to the text, which of the following has a pH between 6.0 and 8.5?

A. AcidsB. DisinfectantsC. Natural waterD. None of the above

Caustic

149. A strong chemical - NaOH is used in the treatment process to neutralize acidity, and to lower the pH value.

A. True B. False

Polymer

150. Polymer is a water treatment chemical that when combined with other types of coagulants, aids in binding small suspended particles to larger particles to help in the settling and filtering processes.

A. True B. False

When Finished with Your Assignment...

REQUIRED DOCUMENTS

Please scan the Registration Page, Answer Key, Proctoring report, Survey and Driver's License and email these documents to info@TLCH2O.com.

IPhone Scanning Instructions

If you are unable to scan, take a photo of these documents with your **iPhone** and send these photos to TLC, info@TLCH2O.com.

FAX

If you are unable to scan and email, please fax these documents to TLC, if you fax, call to confirm that we received your paperwork. (928) 468-0675